- -

Characterisation of an unbound granular mixture with waste tyre rubber for subballast layers

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

Characterisation of an unbound granular mixture with waste tyre rubber for subballast layers

Show full item record

Martínez Fernández, P.; Medel Perallon, E.; Hidalgo Signes, C.; Insa Franco, R. (2015). Characterisation of an unbound granular mixture with waste tyre rubber for subballast layers. Materials and Structures. 48(12):3847-3861. doi:10.1617/s11527-014-0443-z

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/62488

Files in this item

Item Metadata

Title: Characterisation of an unbound granular mixture with waste tyre rubber for subballast layers
Author:
UPV Unit: Universitat Politècnica de València. Departamento de Ingeniería e Infraestructura de los Transportes - Departament d'Enginyeria i Infraestructura dels Transports
Universitat Politècnica de València. Departamento de Ingeniería del Terreno - Departament d'Enginyeria del Terreny
Universitat Politècnica de València. Instituto del Transporte y Territorio - Institut del Transport i Territori
Issued date:
Abstract:
Scrap tyres are a solid waste material produced in large quantities. One potential way of disposal is to use rubber particles from shredded tyres as a construction material. Within this context, this paper presents a ...[+]
Subjects: Railways subballast , Waste tyres , Unbound granular materials , Resilient modulus
Copyrigths: Reserva de todos los derechos
Source:
Materials and Structures. (issn: 1359-5997 )
DOI: 10.1617/s11527-014-0443-z
Publisher:
Springer Verlag (Germany)
Publisher version: http://dx.doi.org/10.1617/s11527-014-0443-z
Type: Artículo

References

Sharma VK, Fortuna F, Mincarini M, Berillo M, Cornacchia G (2000) Disposal of waste tyres for energy recovery and safe environment. Appl Energy 65(1–4):381–394

Commission European (1999) Directive on the Landfill of Waste 1999/31/EC. Off J Eur Union 182:1–19

ASTM D6270-98 (1998) Standard practice for use of scrap tires in civil engineering applications. ASTM, West Conshohocken [+]
Sharma VK, Fortuna F, Mincarini M, Berillo M, Cornacchia G (2000) Disposal of waste tyres for energy recovery and safe environment. Appl Energy 65(1–4):381–394

Commission European (1999) Directive on the Landfill of Waste 1999/31/EC. Off J Eur Union 182:1–19

ASTM D6270-98 (1998) Standard practice for use of scrap tires in civil engineering applications. ASTM, West Conshohocken

Commission European (2008) Waste Framework Directive 2008/98/EC. Off J Eur Union 312:3–30

SIGNUS (2012) Activity Report 2012. Available at: http://www.signus.es/ . Accessed 2 July 2014

Edinçliler A, Baykal G, Saygılı A (2010) Influence of different processing techniques on the mechanical properties of used tires in embankment construction. Waste Manag 30:1073–1080

Sheehan PJ, Warmerdam JM, Ogle S, Humphrey DN, Patenaude SM (2006) Evaluating the risk to aquatic ecosystems posed by leachate from tire shred fill in roads using toxicity tests, toxicity identification evaluations and groundwater modeling. Environ Toxicol Chem 25(2):400–411

Humphrey DN, Blumenthal M (2010) The use of tire-derived aggregate in road construction applications. Green Streets Highw 2010:299–313

Humphrey DN, Whetten N, Weaver J, Recker K (2000) Tire shreds as lightweight fill for construction on weak marine clay. In: Proceedings of the international symposium on coastal geotechnical engineering in practice. Balkema, Rotterdam

Wolfe SL, Humphrey DN, Wetzel EA (2004) Development of tire shred underlayment to reduce groundborne vibration from LRT track. Geotechnical engineering for transportation projects: Proceedings of Geo-Trans 2004, pp 750–759. ISSN:0-7844-0744-4

Cano H, Estaire J, Rodríguez R (2011) Terraplén Experimental construido con Neumáticos Troceados (Experimental embankment built with shredded tyres). Jornada Técnica Sobre Experiencias Recientes en Estructuras de Tierra para Infraestructuras Viarias. Madrid, 10 Feb 2011

Di Mino G, Di Liberto M, Maggiore C, Noto S (2012) A dynamic model of ballasted rail track with bituminous sub-ballast layer. Procedia 53:366–378

Wang J, Zeng X (2004) Numerical simulation of vibration attenuation of high-speed train foundations with varied trackbed underlayment materials. J Vib Control 10:1123–1136

Buonanno A, Mele R (2000) The use of bituminous mix sub-ballast in the Italian State Railways. 2nd Eurasphalt & Eurobitume Congress, Barcelona, 20–22 Sept 2000

Feng Z, Sutter K (2000) Dynamic properties of granulated rubber/sand mixtures. Geotech Test J 23(3):338–344

Nakhaei A, Marandi SM, Sani Kermani S, Bagheripour MH (2012) Dynamic properties of granular soils mixed with granulated rubber. Soil Dyn Earthq Eng 43:124–132

Salgado R, Yoon S, Zia Siddiki N (2003) Construction of tire shreds test embankment. Joint Transportation Research Program. Technical Report Nº: FHWA/IN/JTRP-2002/35. Available at: http://docs.lib.purdue.edu/jtrp/42/ . Accessed 11 Feb 2013

Yoon S, Prezzi M, Zia Siddiki N, Kim B (2005) Construction of a test embankment using a sand–tire shred mixture as fill material. Waste Manag 26:1033–1044

Melis M (2006) Terraplenes y balasto en Alta Velocidad Ferroviaria (Embankment and ballast in high speed railways). Revista de Obras Públicas 3464:7–36

Vipulanandan C, Bilgin Ö, Jeannot Y, Vembu K, Bahadir M (2009) Prediction of embankment settlement over soft soils. Project Report Nº FHWA/TX-09/0-5530-1. Available at: http://d2dtl5nnlpfr0r.cloudfront.net/tti.tamu.edu/documents/0-5530-1.pdf . Accessed 30 June 2014

Spanish Ministry of Public Works (2006) Pliego de Prescripciones Técnicas Generales de Materiales Ferroviarios PF-7: Subbalasto (General Technical Specifications for Railway Materials PF-7: Subballast). Boletín Oficial del Estado 103:16891–16909

ADIF (2008) ‘Pliego de Prescripciones Técnicas Tipo para los Proyectos de Plataforma PGP-2008 (Technical specifications for Railway Platform Projects PGP-2008)

ASTM D75/D75M-09 (2009) Standard practice for sampling aggregates. ASTM, West Conshohocken

Speir RH, Witczak MW (1996) Use of shredded rubber in unbound granular flexible pavement layers. Transp Res Rec 1547:96–106

Garnica PA, Pérez GN, Gomes LA (2001) Módulo de Resiliencia en Suelos Finos y Materiales Granulares. (Resilient Modulus in Fine Soils and Aggregate Materials). Publicación Técnica, 142, Secretaría de Comunicaciones y Transportes (SCI), Instituto Mexicano del Transporte (IMT), Sanfandila

Tutumluer E, Seyhan U (1999) Laboratory determination of anisotropic aggregate resilient moduli using a new innovative test device. 78th Annual meeting of the transportation research board specialty session on “Determination of resilient modulus for pavement design”, Washington, DC

AASHTO T307-99-UL (2003) Standard method of test for determining the resilient modulus of soils and aggregate materials. AASHTO, Washington, DC

FGSV: Earthworks and Foundation Engineering Task Force ZTVE-StB 94 (1994) Supplementary technical terms and conditions of contract and guidelines for earthworks in road construction

SETRA (2005) Informative Note 114. Éléments techniques pour la conception et la realization de planches d’essais de compactage dans les chantiers de terrassements (Technical elements for the conception and construction of compaction test boards on earthwork sites)

Hataf N, Rahimi MM (2006) Experimental investigation of bearing capacity of sand reinforced with randomly distributed tire shreds. Constr Build Mater 20(10):910–916

National Cooperative Highway Research Program (2004) Research results digest. Laboratory determination of resilient modulus for flexible pavement design. Available at: http://onlinepubs.trb.org/onlinepubs/nchrp/nchrp_rrd_285.pdf . Accessed 1 Apr 2014

Brown SF, Pappin JW (1985) Analysis of pavements with granular bases. Transp Res Rec 1022:52–59

Araya AA, Huurman M, Molenaar AAA, Houben LJM (2012) Investigation of the resilient behavior of granular base materials with simple test apparatus. Mater Struct 45:695–705

Mohammad LN, Puppala A, Alavalli P (1999) Effect of strain measurements on resilient modulus of granular soils. Dynamic geotechnical testing, vol 2, ASTM STP 1213, pp 202–221

Gudishala R (2004) Development of resilient modulus prediction models for base and subgrade pavement layers from in situ devices test results. PhD thesis, Sri Krishnadevaraya University, Anantapur

German Railways NGT 39 (1997) Richtlinie für die Anwendung des Leichten Fallgewichtsgerätes im Eisenbahnbau. (Directions of application of light drop-weight tester in railways)

ASTM D3017 (2001) Standard test method for water content of soil and rock in place by nuclear methods (shallow depth). ASTM, West Conshohocken

ASTM D2922 (2001) Standard test methods for density of soil and soil-aggregate in place by nuclear methods (shallow depth). ASTM, West Conshohocken

ASTM D1883 (2005) Standard test method for CBR (California bearing ratio) of laboratory compacted soils. ASTM, West Conshohocken

ASTM C131 (2006) Standard test method for resistance to degradation of small-size coarse aggregate by abrasion and impact in the Los Angeles machine. ASTM, West Conshohocken

ASTM D5821 (2006) Standard test method for determining the percentage of fractured particles in coarse aggregate. ASTM, West Conshohocken

ASTM D4959 (2007) Standard test method for determination of water (moisture) content of soil by direct heating. ASTM, West Conshohocken

ASTM D6913 (2009) Standard test methods for particle-size distribution (gradation) of soils using sieve analysis. ASTM, West Conshohocken

ASTM D2419 (2009) Standard test method for sand equivalent value of soils and fine aggregate. ASTM, West Conshohocken

ASTM D4694 (2009) Standard test method for deflections with a falling-weight-type impulse load device. ASTM, West Conshohocken

ASTM D4318 (2010) Standard test methods for liquid limit, plastic limit, and plasticity index of soils. ASTM, West Conshohocken

ASTM D5084 (2010) Standard test methods for measurement of hydraulic conductivity of saturated porous materials using a flexible wall permeameter. Method B and C. ASTM, West Conshohocken

ASTM D6928 (2010) Standard test method for resistance of coarse aggregate to degradation by abrasion in the Micro-Deval apparatus. ASTM, West Conshohocken

ASTM D3080/D3080M (2011) Standard test method for direct shear test of soils under consolidated drained conditions. ASTM, West Conshohocken

ASTM D7181 (2011) Standard test method for consolidated drained triaxial compression test for soils. ASTM, West Conshohocken

ASTM C127 (2012) Standard test method for density, relative density (specific gravity), and absorption of coarse aggregate. ASTM, West Conshohocken

ASTM D7760 (2012) Standard test method for measurement of hydraulic conductivity of tire derived aggregates using a rigid wall permeameter. ASTM, West Conshohocken

ASTM D1557 (2012) Standard test methods for laboratory compaction characteristics of soil using modified effort (56,000 ft-lbf/ft3 (2,700 kN-m/m3)). ASTM, West Conshohocken

ASTM D2974 (2013) Standard test methods for moisture, ash, and organic matter of peat and other organic soils. ASTM, West Conshohocken

BS 1377-5 (1990) Methods of test for soils for civil engineering purposes. Compressibility, permeability and durability tests. British Standards Institution, London

BS 1377-9 (1990) Methods for test for soils for civil engineering purposes. In-situ tests: determination of the vertical deformation and strength characteristics of soil by the plate loading. British Standards Institution, London

CEDEX NLT-148/91 (1991) Toma de muestras de roca, escorias, grava, arena, polvo mineral y bloques de piedra empleados como materiales de construcción de carreteras (Sampling of rocks, slags, sand, mineral dust and stone blocks used for road construction)

CEDEX NLT-357:98 (1998) Ensayo de carga con placa (Load plate test)

RENFE N.R.V. 2-1-0.0 ss(1982) Obras de Tierra, Calidad de la Plataforma. (Earthworks, platform quality)

[-]

This item appears in the following Collection(s)

Show full item record