Mostrar el registro sencillo del ítem
dc.contributor.author | Mesejo Conejos, Carlos | es_ES |
dc.contributor.author | Yuste, Roberto | es_ES |
dc.contributor.author | Martínez Fuentes, Amparo | es_ES |
dc.contributor.author | Reig Valor, Carmina | es_ES |
dc.contributor.author | Iglesias, Domingo J. | es_ES |
dc.contributor.author | Primo-Millo, Eduardo | es_ES |
dc.contributor.author | Agustí Fonfría, Manuel | es_ES |
dc.date.accessioned | 2016-04-14T12:14:50Z | |
dc.date.available | 2016-04-14T12:14:50Z | |
dc.date.issued | 2013-05 | |
dc.identifier.issn | 0031-9317 | |
dc.identifier.uri | http://hdl.handle.net/10251/62562 | |
dc.description.abstract | This study aimed to determine if self-pollination is needed to trigger facultative parthenocarpy in self-incompatible Clementine mandarins (Citrus clementina Hort. ex Tan.). 'Marisol' and 'Clemenules' mandarins were selected, and self-pollinated and un-pollinated flowers from both cultivars were used for comparison. These mandarins are always seedless after self-pollination and show high and low ability to develop substantial parthenocarpic fruits, respectively. The time-course for pollen grain germination, tube growth and ovule abortion was analyzed as well as that for carbohydrates, active gibberellins (GA 1 and GA 4), auxin (IAA) and abscisic acid (ABA) content in the ovary. 'Clemenules' showed higher pollen grain germination, but pollen tube development was arrested in the upper style 9days after pollination in both cultivars. Self-pollination did not stimulate parthenocarpy, whereas both un-pollinated and self-pollinated ovaries set fruit regardless of the cultivar. On the other hand, 'Marisol' un-pollinated flowers showed greater parthenocarpic ovary growth than 'Clemenules' un-pollinated flowers, i.e. higher ovule abortion rate (+21%), higher fruit set (+44%) and higher fruit weight (+50%). Further, the greater parthenocarpic ability of 'Marisol' paralleled higher levels of GA 1 in the ovary (+34% at anthesis). 'Marisol' ovary also showed higher hexoses and starch mobilization, but lower ABA levels (-64% at anthesis). Self-pollination did not modify carbohydrates or GA content in the ovary compared to un-pollination. Results indicate that parthenocarpy in the Clementine mandarin is pollination-independent with its ability to set depending on the ovary hormone levels. These findings suggest that parthenocarpy in fertile self-incompatible mandarins is constitutively regulated. © Physiologia Plantarum 2012. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Wiley-Blackwell | es_ES |
dc.relation.ispartof | Physiologia Plantarum | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Apricot prunus-armeniaca | es_ES |
dc.subject | Polar auxin transport | es_ES |
dc.subject | Valencia sweet orange | es_ES |
dc.subject | Fruit-set | es_ES |
dc.subject | Gibberellic acid | es_ES |
dc.subject | Seedless mandarins | es_ES |
dc.subject | Pollen germination | es_ES |
dc.subject | Abscission | es_ES |
dc.subject | Tomato | es_ES |
dc.subject.classification | PRODUCCION VEGETAL | es_ES |
dc.title | Self-pollination and parthenocarpic ability in developing ovaries of self-incompatible Clementine mandarins (Citrus clementina) | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1111/j.1399-3054.2012.01697.x | |
dc.rights.accessRights | Cerrado | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Producción Vegetal - Departament de Producció Vegetal | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Instituto Agroforestal Mediterráneo - Institut Agroforestal Mediterrani | es_ES |
dc.description.bibliographicCitation | Mesejo Conejos, C.; Yuste, R.; Martinez Fuentes, A.; Reig Valor, C.; Iglesias, DJ.; Primo-Millo, E.; Agustí Fonfría, M. (2013). Self-pollination and parthenocarpic ability in developing ovaries of self-incompatible Clementine mandarins (Citrus clementina). Physiologia Plantarum. 148(1):87-96. doi:10.1111/j.1399-3054.2012.01697.x | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | http://dx.doi.org/10.1111/j.1399-3054.2012.01697.x | es_ES |
dc.description.upvformatpinicio | 87 | es_ES |
dc.description.upvformatpfin | 96 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 148 | es_ES |
dc.description.issue | 1 | es_ES |
dc.relation.senia | 260728 | es_ES |
dc.description.references | Ben-Cheikh, W., Perez-Botella, J., Tadeo, F. R., Talon, M., & Primo-Millo, E. (1997). Pollination Increases Gibberellin Levels in Developing Ovaries of Seeded Varieties of Citrus. Plant Physiology, 114(2), 557-564. doi:10.1104/pp.114.2.557 | es_ES |
dc.description.references | Beppu, K., Suehara, T., & Kataoka, I. (2001). Embryo Sac Development and Fruit Set of «Satohnishiki» Sweet Cherry as Affected by Temperature, GA3 and Paclobutrazol. Engei Gakkai zasshi, 70(2), 157-162. doi:10.2503/jjshs.70.157 | es_ES |
dc.description.references | Blanusa, T., Else, M. A., Atkinson, C. J., & Davies, W. J. (2005). The regulation of sweet cherry fruit abscission by polar auxin transport. Plant Growth Regulation, 45(3), 189-198. doi:10.1007/s10725-005-3568-9 | es_ES |
dc.description.references | Bondada, B. R. (2011). Anomalies in Structure, Growth Characteristics, and Nutritional Composition as Induced by 2,4-Dichlorophenoxy Acetic Acid Drift Phytotoxicity in Grapevine Leaves and Clusters. Journal of the American Society for Horticultural Science, 136(3), 165-176. doi:10.21273/jashs.136.3.165 | es_ES |
dc.description.references | Distefano, G., Caruso, M., La Malfa, S., Gentile, A., & Tribulato, E. (2009). Histological and molecular analysis of pollen–pistil interaction in clementine. Plant Cell Reports, 28(9), 1439-1451. doi:10.1007/s00299-009-0744-9 | es_ES |
dc.description.references | Distefano, G., Gentile, A., & Herrero, M. (2011). Pollen–pistil interactions and early fruiting in parthenocarpic citrus. Annals of Botany, 108(3), 499-509. doi:10.1093/aob/mcr187 | es_ES |
dc.description.references | Ebadi, A., Rezaei, M., & Fatahi, R. (2010). Mechanism of seedlessness in Iranian seedless barberry (Berberis vulgaris L. var. asperma). Scientia Horticulturae, 125(3), 486-493. doi:10.1016/j.scienta.2010.04.002 | es_ES |
dc.description.references | Else, M. A. (2004). The role of polar auxin transport through pedicels of Prunus avium L. in relation to fruit development and retention. Journal of Experimental Botany, 55(405), 2099-2109. doi:10.1093/jxb/erh208 | es_ES |
dc.description.references | Gómez-Cadenas, A., Mehouachi, J., Tadeo, F. R., Primo-Millo, E., & Talon, M. (2000). Hormonal regulation of fruitlet abscission induced by carbohydrate shortage in citrus. Planta, 210(4), 636-643. doi:10.1007/s004250050054 | es_ES |
dc.description.references | Gorguet, B., Heusden, A. W., & Lindhout, P. (2005). Parthenocarpic Fruit Development in Tomato. Plant Biology, 7(2), 131-139. doi:10.1055/s-2005-837494 | es_ES |
dc.description.references | Guardiola, J. L., Garcia-Mari, F., & Agusti, M. (1984). Competition and fruit set in the Washington navel orange. Physiologia Plantarum, 62(3), 297-302. doi:10.1111/j.1399-3054.1984.tb04576.x | es_ES |
dc.description.references | Gutierrez-Manero, F. J., Ramos-Solano, B., Probanza, A. n, Mehouachi, J., R. Tadeo, F., & Talon, M. (2001). The plant-growth-promoting rhizobacteria Bacillus pumilus and Bacillus licheniformis produce high amounts of physiologically active gibberellins. Physiologia Plantarum, 111(2), 206-211. doi:10.1034/j.1399-3054.2001.1110211.x | es_ES |
dc.description.references | HUERTA, L., FORMENT, J., GADEA, J., FAGOAGA, C., PEÑA, L., PÉREZ-AMADOR, M. A., & GARCÍA-MARTÍNEZ, J. L. (2008). Gene expression analysis in citrus reveals the role of gibberellins on photosynthesis and stress. Plant, Cell & Environment, 31(11), 1620-1633. doi:10.1111/j.1365-3040.2008.01870.x | es_ES |
dc.description.references | Iglesias, D. J., Tadeo, F. R., Primo-Millo, E., & Talon, M. (2006). Carbohydrate and ethylene levels related to fruitlet drop through abscission zone A in citrus. Trees, 20(3), 348-355. doi:10.1007/s00468-005-0047-x | es_ES |
dc.description.references | Kolotilin, I., Koltai, H., Tadmor, Y., Bar-Or, C., Reuveni, M., Meir, A., … Levin, I. (2007). Transcriptional Profiling of high pigment-2dg Tomato Mutant Links Early Fruit Plastid Biogenesis with Its Overproduction of Phytonutrients. Plant Physiology, 145(2), 389-401. doi:10.1104/pp.107.102962 | es_ES |
dc.description.references | Linskens, H. F., & Esser, K. (1957). �ber eine spezifische Anf�rbung der Pollenschl�uche im Griffel und die Zahl der Kallosepfropfen nach Selbstung und Fremdung. Die Naturwissenschaften, 44(1), 16-16. doi:10.1007/bf00629340 | es_ES |
dc.description.references | Mehouachi, J., Serna, D., Zaragoza, S., Agusti, M., Talon, M., & Primo-Millo, E. (1995). Defoliation increases fruit abscission and reduces carbohydrate levels in developing fruits and woody tissues of Citrus unshiu. Plant Science, 107(2), 189-197. doi:10.1016/0168-9452(95)04111-7 | es_ES |
dc.description.references | Mesejo, C., Martínez-Fuentes, A., Juan, M., Almela, V., & Agustí, M. (2003). Plant Growth Regulation, 39(2), 131-135. doi:10.1023/a:1022520618786 | es_ES |
dc.description.references | Mesejo, C., Martínez-Fuentes, A., Reig, C., Rivas, F., & Agustí, M. (2006). The inhibitory effect of CuSO4 on Citrus pollen germination and pollen tube growth and its application for the production of seedless fruit. Plant Science, 170(1), 37-43. doi:10.1016/j.plantsci.2005.07.023 | es_ES |
dc.description.references | Mesejo, C., Martínez-Fuentes, A., Reig, C., & Agustí, M. (2007). The effective pollination period in ‘Clemenules’ mandarin, ‘Owari’ Satsuma mandarin and ‘Valencia’ sweet orange. Plant Science, 173(2), 223-230. doi:10.1016/j.plantsci.2007.05.009 | es_ES |
dc.description.references | Mesejo, C., Martínez-Fuentes, A., Reig, C., & Agustí, M. (2008). Gibberellic acid impairs fertilization in Clementine mandarin under cross-pollination conditions. Plant Science, 175(3), 267-271. doi:10.1016/j.plantsci.2008.04.008 | es_ES |
dc.description.references | Mesejo, C., Rosito, S., Reig, C., Martínez-Fuentes, A., & Agustí, M. (2011). Synthetic Auxin 3,5,6-TPA Provokes Citrus clementina (Hort. ex Tan) Fruitlet Abscission by Reducing Photosynthate Availability. Journal of Plant Growth Regulation, 31(2), 186-194. doi:10.1007/s00344-011-9230-z | es_ES |
dc.description.references | Patterson, S. E. (2001). Cutting Loose. Abscission and Dehiscence in Arabidopsis. Plant Physiology, 126(2), 494-500. doi:10.1104/pp.126.2.494 | es_ES |
dc.description.references | Rivas, F., Gravina, A., & Agusti, M. (2007). Girdling effects on fruit set and quantum yield efficiency of PSII in two Citrus cultivars. Tree Physiology, 27(4), 527-535. doi:10.1093/treephys/27.4.527 | es_ES |
dc.description.references | Rodrigo, J., & Herrero, M. (1998). Influence of intraovular reserves on ovule fate in apricot ( Prunus armeniaca L.). Sexual Plant Reproduction, 11(2), 86-93. doi:10.1007/s004970050124 | es_ES |
dc.description.references | Rodrigo, J., Hormaza, J. I., & Herrero, M. (2000). Ovary starch reserves and flower development in apricot (Prunus armeniaca). Physiologia Plantarum, 108(1), 35-41. doi:10.1034/j.1399-3054.2000.108001035.x | es_ES |
dc.description.references | Rodríguez-Gamir, J., Ancillo, G., González-Mas, M. C., Primo-Millo, E., Iglesias, D. J., & Forner-Giner, M. A. (2011). Root signalling and modulation of stomatal closure in flooded citrus seedlings. Plant Physiology and Biochemistry, 49(6), 636-645. doi:10.1016/j.plaphy.2011.03.003 | es_ES |
dc.description.references | Rogers, J. C., & Rogers, S. W. (1992). Definition and functional implications of gibberellin and abscisic acid cis-acting hormone response complexes. The Plant Cell, 4(11), 1443-1451. doi:10.1105/tpc.4.11.1443 | es_ES |
dc.description.references | Saito, A., Fukasawa-Akada, T., Igarashi, M., Sato, T., & Suzuki, M. (2007). Self-compatibility of 3 Apple Cultivars and Identification of S-allele Genotypes in Their Self-pollinated Progenies. Horticultural Research (Japan), 6(1), 27-32. doi:10.2503/hrj.6.27 | es_ES |
dc.description.references | Sanzol, J., & Herrero, M. (2001). The «effective pollination period» in fruit trees. Scientia Horticulturae, 90(1-2), 1-17. doi:10.1016/s0304-4238(00)00252-1 | es_ES |
dc.description.references | Schijlen, E. G. W. M., de Vos, C. H. R., Martens, S., Jonker, H. H., Rosin, F. M., Molthoff, J. W., … Bovy, A. G. (2007). RNA Interference Silencing of Chalcone Synthase, the First Step in the Flavonoid Biosynthesis Pathway, Leads to Parthenocarpic Tomato Fruits. Plant Physiology, 144(3), 1520-1530. doi:10.1104/pp.107.100305 | es_ES |
dc.description.references | Spiegel-Roy, P., & Goldschmidt, E. E. (1996). The Biology of Citrus. doi:10.1017/cbo9780511600548 | es_ES |
dc.description.references | Talon, M., Zacarias, L., & Primo-Millo, E. (1990). Hormonal changes associated with fruit set and development in mandarins differing in their parthenocarpic ability. Physiologia Plantarum, 79(2), 400-406. doi:10.1111/j.1399-3054.1990.tb06759.x | es_ES |
dc.description.references | Talon, M., Zacarias, L., & Primo-Millo, E. (1992). Gibberellins and Parthenocarpic Ability in Developing Ovaries of Seedless Mandarins. Plant Physiology, 99(4), 1575-1581. doi:10.1104/pp.99.4.1575 | es_ES |
dc.description.references | Vardi A Shani AF Weinbaum SA 1988 | es_ES |
dc.description.references | Vardi, A., Levin, I., & Carmi, N. (2008). Induction of Seedlessness in Citrus: From Classical Techniques to Emerging Biotechnological Approaches. Journal of the American Society for Horticultural Science, 133(1), 117-126. doi:10.21273/jashs.133.1.117 | es_ES |
dc.description.references | Varoquaux, F., Blanvillain, R., Delseny, M., & Gallois, P. (2000). Less is better: new approaches for seedless fruit production. Trends in Biotechnology, 18(6), 233-242. doi:10.1016/s0167-7799(00)01448-7 | es_ES |
dc.description.references | Wang, H., Schauer, N., Usadel, B., Frasse, P., Zouine, M., Hernould, M., … Bouzayen, M. (2009). Regulatory Features Underlying Pollination-Dependent and -Independent Tomato Fruit Set Revealed by Transcript and Primary Metabolite Profiling. The Plant Cell, 21(5), 1428-1452. doi:10.1105/tpc.108.060830 | es_ES |
dc.description.references | Weiss, D., & Ori, N. (2007). Mechanisms of Cross Talk between Gibberellin and Other Hormones. Plant Physiology, 144(3), 1240-1246. doi:10.1104/pp.107.100370 | es_ES |
dc.description.references | Yuan, L., & Xu, D.-Q. (2001). Photosynthesis Research, 68(1), 39-47. doi:10.1023/a:1011894912421 | es_ES |
dc.description.references | Zacarias, L., Talon, M., Ben-Cheikh, W., Lafuente, M. T., & Primo-Millo, E. (1995). Abscisic acid increases in non-growing and paclobutrazol-treated fruits of seedless mandarins. Physiologia Plantarum, 95(4), 613-619. doi:10.1111/j.1399-3054.1995.tb05530.x | es_ES |