- -

Self-pollination and parthenocarpic ability in developing ovaries of self-incompatible Clementine mandarins (Citrus clementina)

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Self-pollination and parthenocarpic ability in developing ovaries of self-incompatible Clementine mandarins (Citrus clementina)

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Mesejo Conejos, Carlos es_ES
dc.contributor.author Yuste, Roberto es_ES
dc.contributor.author Martínez Fuentes, Amparo es_ES
dc.contributor.author Reig Valor, Carmina es_ES
dc.contributor.author Iglesias, Domingo J. es_ES
dc.contributor.author Primo-Millo, Eduardo es_ES
dc.contributor.author Agustí Fonfría, Manuel es_ES
dc.date.accessioned 2016-04-14T12:14:50Z
dc.date.available 2016-04-14T12:14:50Z
dc.date.issued 2013-05
dc.identifier.issn 0031-9317
dc.identifier.uri http://hdl.handle.net/10251/62562
dc.description.abstract This study aimed to determine if self-pollination is needed to trigger facultative parthenocarpy in self-incompatible Clementine mandarins (Citrus clementina Hort. ex Tan.). 'Marisol' and 'Clemenules' mandarins were selected, and self-pollinated and un-pollinated flowers from both cultivars were used for comparison. These mandarins are always seedless after self-pollination and show high and low ability to develop substantial parthenocarpic fruits, respectively. The time-course for pollen grain germination, tube growth and ovule abortion was analyzed as well as that for carbohydrates, active gibberellins (GA 1 and GA 4), auxin (IAA) and abscisic acid (ABA) content in the ovary. 'Clemenules' showed higher pollen grain germination, but pollen tube development was arrested in the upper style 9days after pollination in both cultivars. Self-pollination did not stimulate parthenocarpy, whereas both un-pollinated and self-pollinated ovaries set fruit regardless of the cultivar. On the other hand, 'Marisol' un-pollinated flowers showed greater parthenocarpic ovary growth than 'Clemenules' un-pollinated flowers, i.e. higher ovule abortion rate (+21%), higher fruit set (+44%) and higher fruit weight (+50%). Further, the greater parthenocarpic ability of 'Marisol' paralleled higher levels of GA 1 in the ovary (+34% at anthesis). 'Marisol' ovary also showed higher hexoses and starch mobilization, but lower ABA levels (-64% at anthesis). Self-pollination did not modify carbohydrates or GA content in the ovary compared to un-pollination. Results indicate that parthenocarpy in the Clementine mandarin is pollination-independent with its ability to set depending on the ovary hormone levels. These findings suggest that parthenocarpy in fertile self-incompatible mandarins is constitutively regulated. © Physiologia Plantarum 2012. es_ES
dc.language Inglés es_ES
dc.publisher Wiley-Blackwell es_ES
dc.relation.ispartof Physiologia Plantarum es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Apricot prunus-armeniaca es_ES
dc.subject Polar auxin transport es_ES
dc.subject Valencia sweet orange es_ES
dc.subject Fruit-set es_ES
dc.subject Gibberellic acid es_ES
dc.subject Seedless mandarins es_ES
dc.subject Pollen germination es_ES
dc.subject Abscission es_ES
dc.subject Tomato es_ES
dc.subject.classification PRODUCCION VEGETAL es_ES
dc.title Self-pollination and parthenocarpic ability in developing ovaries of self-incompatible Clementine mandarins (Citrus clementina) es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1111/j.1399-3054.2012.01697.x
dc.rights.accessRights Cerrado es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Producción Vegetal - Departament de Producció Vegetal es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Agroforestal Mediterráneo - Institut Agroforestal Mediterrani es_ES
dc.description.bibliographicCitation Mesejo Conejos, C.; Yuste, R.; Martinez Fuentes, A.; Reig Valor, C.; Iglesias, DJ.; Primo-Millo, E.; Agustí Fonfría, M. (2013). Self-pollination and parthenocarpic ability in developing ovaries of self-incompatible Clementine mandarins (Citrus clementina). Physiologia Plantarum. 148(1):87-96. doi:10.1111/j.1399-3054.2012.01697.x es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/10.1111/j.1399-3054.2012.01697.x es_ES
dc.description.upvformatpinicio 87 es_ES
dc.description.upvformatpfin 96 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 148 es_ES
dc.description.issue 1 es_ES
dc.relation.senia 260728 es_ES
dc.description.references Ben-Cheikh, W., Perez-Botella, J., Tadeo, F. R., Talon, M., & Primo-Millo, E. (1997). Pollination Increases Gibberellin Levels in Developing Ovaries of Seeded Varieties of Citrus. Plant Physiology, 114(2), 557-564. doi:10.1104/pp.114.2.557 es_ES
dc.description.references Beppu, K., Suehara, T., & Kataoka, I. (2001). Embryo Sac Development and Fruit Set of «Satohnishiki» Sweet Cherry as Affected by Temperature, GA3 and Paclobutrazol. Engei Gakkai zasshi, 70(2), 157-162. doi:10.2503/jjshs.70.157 es_ES
dc.description.references Blanusa, T., Else, M. A., Atkinson, C. J., & Davies, W. J. (2005). The regulation of sweet cherry fruit abscission by polar auxin transport. Plant Growth Regulation, 45(3), 189-198. doi:10.1007/s10725-005-3568-9 es_ES
dc.description.references Bondada, B. R. (2011). Anomalies in Structure, Growth Characteristics, and Nutritional Composition as Induced by 2,4-Dichlorophenoxy Acetic Acid Drift Phytotoxicity in Grapevine Leaves and Clusters. Journal of the American Society for Horticultural Science, 136(3), 165-176. doi:10.21273/jashs.136.3.165 es_ES
dc.description.references Distefano, G., Caruso, M., La Malfa, S., Gentile, A., & Tribulato, E. (2009). Histological and molecular analysis of pollen–pistil interaction in clementine. Plant Cell Reports, 28(9), 1439-1451. doi:10.1007/s00299-009-0744-9 es_ES
dc.description.references Distefano, G., Gentile, A., & Herrero, M. (2011). Pollen–pistil interactions and early fruiting in parthenocarpic citrus. Annals of Botany, 108(3), 499-509. doi:10.1093/aob/mcr187 es_ES
dc.description.references Ebadi, A., Rezaei, M., & Fatahi, R. (2010). Mechanism of seedlessness in Iranian seedless barberry (Berberis vulgaris L. var. asperma). Scientia Horticulturae, 125(3), 486-493. doi:10.1016/j.scienta.2010.04.002 es_ES
dc.description.references Else, M. A. (2004). The role of polar auxin transport through pedicels of Prunus avium L. in relation to fruit development and retention. Journal of Experimental Botany, 55(405), 2099-2109. doi:10.1093/jxb/erh208 es_ES
dc.description.references Gómez-Cadenas, A., Mehouachi, J., Tadeo, F. R., Primo-Millo, E., & Talon, M. (2000). Hormonal regulation of fruitlet abscission induced by carbohydrate shortage in citrus. Planta, 210(4), 636-643. doi:10.1007/s004250050054 es_ES
dc.description.references Gorguet, B., Heusden, A. W., & Lindhout, P. (2005). Parthenocarpic Fruit Development in Tomato. Plant Biology, 7(2), 131-139. doi:10.1055/s-2005-837494 es_ES
dc.description.references Guardiola, J. L., Garcia-Mari, F., & Agusti, M. (1984). Competition and fruit set in the Washington navel orange. Physiologia Plantarum, 62(3), 297-302. doi:10.1111/j.1399-3054.1984.tb04576.x es_ES
dc.description.references Gutierrez-Manero, F. J., Ramos-Solano, B., Probanza, A. n, Mehouachi, J., R. Tadeo, F., & Talon, M. (2001). The plant-growth-promoting rhizobacteria Bacillus pumilus and Bacillus licheniformis produce high amounts of physiologically active gibberellins. Physiologia Plantarum, 111(2), 206-211. doi:10.1034/j.1399-3054.2001.1110211.x es_ES
dc.description.references HUERTA, L., FORMENT, J., GADEA, J., FAGOAGA, C., PEÑA, L., PÉREZ-AMADOR, M. A., & GARCÍA-MARTÍNEZ, J. L. (2008). Gene expression analysis in citrus reveals the role of gibberellins on photosynthesis and stress. Plant, Cell & Environment, 31(11), 1620-1633. doi:10.1111/j.1365-3040.2008.01870.x es_ES
dc.description.references Iglesias, D. J., Tadeo, F. R., Primo-Millo, E., & Talon, M. (2006). Carbohydrate and ethylene levels related to fruitlet drop through abscission zone A in citrus. Trees, 20(3), 348-355. doi:10.1007/s00468-005-0047-x es_ES
dc.description.references Kolotilin, I., Koltai, H., Tadmor, Y., Bar-Or, C., Reuveni, M., Meir, A., … Levin, I. (2007). Transcriptional Profiling of high pigment-2dg Tomato Mutant Links Early Fruit Plastid Biogenesis with Its Overproduction of Phytonutrients. Plant Physiology, 145(2), 389-401. doi:10.1104/pp.107.102962 es_ES
dc.description.references Linskens, H. F., & Esser, K. (1957). �ber eine spezifische Anf�rbung der Pollenschl�uche im Griffel und die Zahl der Kallosepfropfen nach Selbstung und Fremdung. Die Naturwissenschaften, 44(1), 16-16. doi:10.1007/bf00629340 es_ES
dc.description.references Mehouachi, J., Serna, D., Zaragoza, S., Agusti, M., Talon, M., & Primo-Millo, E. (1995). Defoliation increases fruit abscission and reduces carbohydrate levels in developing fruits and woody tissues of Citrus unshiu. Plant Science, 107(2), 189-197. doi:10.1016/0168-9452(95)04111-7 es_ES
dc.description.references Mesejo, C., Martínez-Fuentes, A., Juan, M., Almela, V., & Agustí, M. (2003). Plant Growth Regulation, 39(2), 131-135. doi:10.1023/a:1022520618786 es_ES
dc.description.references Mesejo, C., Martínez-Fuentes, A., Reig, C., Rivas, F., & Agustí, M. (2006). The inhibitory effect of CuSO4 on Citrus pollen germination and pollen tube growth and its application for the production of seedless fruit. Plant Science, 170(1), 37-43. doi:10.1016/j.plantsci.2005.07.023 es_ES
dc.description.references Mesejo, C., Martínez-Fuentes, A., Reig, C., & Agustí, M. (2007). The effective pollination period in ‘Clemenules’ mandarin, ‘Owari’ Satsuma mandarin and ‘Valencia’ sweet orange. Plant Science, 173(2), 223-230. doi:10.1016/j.plantsci.2007.05.009 es_ES
dc.description.references Mesejo, C., Martínez-Fuentes, A., Reig, C., & Agustí, M. (2008). Gibberellic acid impairs fertilization in Clementine mandarin under cross-pollination conditions. Plant Science, 175(3), 267-271. doi:10.1016/j.plantsci.2008.04.008 es_ES
dc.description.references Mesejo, C., Rosito, S., Reig, C., Martínez-Fuentes, A., & Agustí, M. (2011). Synthetic Auxin 3,5,6-TPA Provokes Citrus clementina (Hort. ex Tan) Fruitlet Abscission by Reducing Photosynthate Availability. Journal of Plant Growth Regulation, 31(2), 186-194. doi:10.1007/s00344-011-9230-z es_ES
dc.description.references Patterson, S. E. (2001). Cutting Loose. Abscission and Dehiscence in Arabidopsis. Plant Physiology, 126(2), 494-500. doi:10.1104/pp.126.2.494 es_ES
dc.description.references Rivas, F., Gravina, A., & Agusti, M. (2007). Girdling effects on fruit set and quantum yield efficiency of PSII in two Citrus cultivars. Tree Physiology, 27(4), 527-535. doi:10.1093/treephys/27.4.527 es_ES
dc.description.references Rodrigo, J., & Herrero, M. (1998). Influence of intraovular reserves on ovule fate in apricot ( Prunus armeniaca L.). Sexual Plant Reproduction, 11(2), 86-93. doi:10.1007/s004970050124 es_ES
dc.description.references Rodrigo, J., Hormaza, J. I., & Herrero, M. (2000). Ovary starch reserves and flower development in apricot (Prunus armeniaca). Physiologia Plantarum, 108(1), 35-41. doi:10.1034/j.1399-3054.2000.108001035.x es_ES
dc.description.references Rodríguez-Gamir, J., Ancillo, G., González-Mas, M. C., Primo-Millo, E., Iglesias, D. J., & Forner-Giner, M. A. (2011). Root signalling and modulation of stomatal closure in flooded citrus seedlings. Plant Physiology and Biochemistry, 49(6), 636-645. doi:10.1016/j.plaphy.2011.03.003 es_ES
dc.description.references Rogers, J. C., & Rogers, S. W. (1992). Definition and functional implications of gibberellin and abscisic acid cis-acting hormone response complexes. The Plant Cell, 4(11), 1443-1451. doi:10.1105/tpc.4.11.1443 es_ES
dc.description.references Saito, A., Fukasawa-Akada, T., Igarashi, M., Sato, T., & Suzuki, M. (2007). Self-compatibility of 3 Apple Cultivars and Identification of S-allele Genotypes in Their Self-pollinated Progenies. Horticultural Research (Japan), 6(1), 27-32. doi:10.2503/hrj.6.27 es_ES
dc.description.references Sanzol, J., & Herrero, M. (2001). The «effective pollination period» in fruit trees. Scientia Horticulturae, 90(1-2), 1-17. doi:10.1016/s0304-4238(00)00252-1 es_ES
dc.description.references Schijlen, E. G. W. M., de Vos, C. H. R., Martens, S., Jonker, H. H., Rosin, F. M., Molthoff, J. W., … Bovy, A. G. (2007). RNA Interference Silencing of Chalcone Synthase, the First Step in the Flavonoid Biosynthesis Pathway, Leads to Parthenocarpic Tomato Fruits. Plant Physiology, 144(3), 1520-1530. doi:10.1104/pp.107.100305 es_ES
dc.description.references Spiegel-Roy, P., & Goldschmidt, E. E. (1996). The Biology of Citrus. doi:10.1017/cbo9780511600548 es_ES
dc.description.references Talon, M., Zacarias, L., & Primo-Millo, E. (1990). Hormonal changes associated with fruit set and development in mandarins differing in their parthenocarpic ability. Physiologia Plantarum, 79(2), 400-406. doi:10.1111/j.1399-3054.1990.tb06759.x es_ES
dc.description.references Talon, M., Zacarias, L., & Primo-Millo, E. (1992). Gibberellins and Parthenocarpic Ability in Developing Ovaries of Seedless Mandarins. Plant Physiology, 99(4), 1575-1581. doi:10.1104/pp.99.4.1575 es_ES
dc.description.references Vardi A Shani AF Weinbaum SA 1988 es_ES
dc.description.references Vardi, A., Levin, I., & Carmi, N. (2008). Induction of Seedlessness in Citrus: From Classical Techniques to Emerging Biotechnological Approaches. Journal of the American Society for Horticultural Science, 133(1), 117-126. doi:10.21273/jashs.133.1.117 es_ES
dc.description.references Varoquaux, F., Blanvillain, R., Delseny, M., & Gallois, P. (2000). Less is better: new approaches for seedless fruit production. Trends in Biotechnology, 18(6), 233-242. doi:10.1016/s0167-7799(00)01448-7 es_ES
dc.description.references Wang, H., Schauer, N., Usadel, B., Frasse, P., Zouine, M., Hernould, M., … Bouzayen, M. (2009). Regulatory Features Underlying Pollination-Dependent and -Independent Tomato Fruit Set Revealed by Transcript and Primary Metabolite Profiling. The Plant Cell, 21(5), 1428-1452. doi:10.1105/tpc.108.060830 es_ES
dc.description.references Weiss, D., & Ori, N. (2007). Mechanisms of Cross Talk between Gibberellin and Other Hormones. Plant Physiology, 144(3), 1240-1246. doi:10.1104/pp.107.100370 es_ES
dc.description.references Yuan, L., & Xu, D.-Q. (2001). Photosynthesis Research, 68(1), 39-47. doi:10.1023/a:1011894912421 es_ES
dc.description.references Zacarias, L., Talon, M., Ben-Cheikh, W., Lafuente, M. T., & Primo-Millo, E. (1995). Abscisic acid increases in non-growing and paclobutrazol-treated fruits of seedless mandarins. Physiologia Plantarum, 95(4), 613-619. doi:10.1111/j.1399-3054.1995.tb05530.x es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem