- -

Climate and hydrological variability: the catchment filtering role

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Climate and hydrological variability: the catchment filtering role

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Andrés Doménech, Ignacio es_ES
dc.contributor.author García Bartual, Rafael Luis es_ES
dc.contributor.author Montanari, Alberto es_ES
dc.contributor.author Marco Segura, Juan Bautista es_ES
dc.date.accessioned 2016-04-15T10:43:44Z
dc.date.available 2016-04-15T10:43:44Z
dc.date.issued 2015
dc.identifier.issn 1027-5606
dc.identifier.uri http://hdl.handle.net/10251/62605
dc.description.abstract Measuring the impact of climate change on flood frequency is a complex and controversial task. Identifying hydrological changes is difficult given the factors, other than climate variability, which lead to significant variations in runoff series. The catchment filtering role is often overlooked and thus may hinder the correct identification of climate variability signatures on hydrological processes. Does climate variability necessarily imply hydrological variability? This research aims to analytically derive the flood frequency distribution based on realistic hypotheses about the rainfall process and the rainfall runoff transformation. The annual maximum peak flow probability distribution is analytically derived to quantify the filtering effect of the rainfall runoff process on climate change. A sensitivity analysis is performed according to typical semi-arid Mediterranean climatic and hydrological conditions, assuming a simple but common scheme for the rainfall runoff transformation in small-size ungauged catchments, i.e. the CN-SCS model. Variability in annual maximum peak flows and its statistical significance are analysed when changes in the climatic input are introduced. Results show that depending on changes in the annual number of rainfall events, the catchment filtering role is particularly significant, especially when the event rainfall volume distribution is not strongly skewed. Results largely depend on the return period: for large return periods, peak flow variability is significantly affected by the climatic input, while for lower return periods, infiltration processes smooth out the impact of climate change es_ES
dc.language Inglés es_ES
dc.publisher European Geosciences Union (EGU) es_ES
dc.relation.ispartof Hydrology and Earth System Sciences es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Climate change es_ES
dc.subject Rainfall-runoff es_ES
dc.subject.classification INGENIERIA HIDRAULICA es_ES
dc.title Climate and hydrological variability: the catchment filtering role es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.5194/hess-19-379-2015
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Hidráulica y Medio Ambiente - Departament d'Enginyeria Hidràulica i Medi Ambient es_ES
dc.description.bibliographicCitation Andrés Doménech, I.; García Bartual, RL.; Montanari, A.; Marco Segura, JB. (2015). Climate and hydrological variability: the catchment filtering role. Hydrology and Earth System Sciences. 19(1):379-387. doi:10.5194/hess-19-379-2015 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/10.5194/hess-19-379-2015 es_ES
dc.description.upvformatpinicio 379 es_ES
dc.description.upvformatpfin 387 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 19 es_ES
dc.description.issue 1 es_ES
dc.relation.senia 283131 es_ES
dc.description.references Allamano, P., Claps, P., and Laio, F.: Global warming increases flood risk in mountainous areas, Geophys. Res. Lett., 36, L24404, https://doi.org/10.1029/2009GL041395, 2009. es_ES
dc.description.references Andrés-Doménech, I., Montanari, A., and Marco, J. B.: Stochastic rainfall analysis for storm tank performance evaluation, Hydrol. Earth Syst. Sci., 14, 1221–1232, https://doi.org/10.5194/hess-14-1221-2010, 2010. es_ES
dc.description.references Andrés-Doménech, I., Montanari, A., and Marco, J. B.: Efficiency of Storm Detention Tanks for Urban Drainage Systems under Climate Variability, J. Water Resour. Pl. Manage., 138, 36–46, https://doi.org/10.1061/(ASCE)WR.1943-5452.0000144, 2012. es_ES
dc.description.references Bloeschl, G. and Montanari, A.: Climate change impacts – throwing the dice?, Hydrol. Process., 24, 374–381, https://doi.org/10.1002/hyp.7574, 2010. es_ES
dc.description.references Botter, G., Basso, S., Rodriguez-Iturbe, I., and Rinaldo, A.: Resilience of river flow regimes, P. Natl. Acad. Sci. USA, 110, 12925–12930, https://doi.org/10.1073/pnas.1311920110, 2013. es_ES
dc.description.references Brunet, M., Casado, M. J., de Castro, M., Galán, P., López, J. A., Martín, J. M., Pastor, A., Petisco, E., Ramos, P., Ribalaygua, J., Rodríguez, E., Sanz, I., and Torres, L.: Generación de escenarios regionalizados de cambio climático para España, Agencia Estatal de Meteorología (AEMET), Ministerio de Medio Ambiente y Medio Rural y Marino, Madrid, 2009. es_ES
dc.description.references Camarasa Belmonte, A. M.: Génesis de avenidas en pequeñas cuencas semiáridas: la Rambla de Poyo (Valencia), Cuad. De Geogr., 48, 81–104, 1990. es_ES
dc.description.references De Zea Bermudez, P. and Kotz, S.: Parameter estimation of the generalized Pareto distribution – Part I, J. Stat. Plan. Infer., 140-6, 1353–1373, https://doi.org/10.1016/j.jspi.2008.11.019, 2010. es_ES
dc.description.references Di Baldassarre, G., Montanari, A., Lins, H., Koutsoyiannis, D., Brandimarte, L., and Blöschl, G.: Flood fatalities in Africa: From diagnosis to mitigation, Geophys. Res. Lett., 37, L22402, https://doi.org/10.1029/2010GL045467, 2010. es_ES
dc.description.references Eagleson, P. S.: Dynamics of flood frequency, Water Resour. Res., 8, 878–898, https://doi.org/10.1029/WR008i004p00878, 1972. es_ES
dc.description.references Ferrer Polo, J.: Recomendaciones para el cálculo hidrometeorológico de avenidas, Centro de Estudios y Experimentación de Obras Públicas, Madrid, 1993. es_ES
dc.description.references Gaume, E.: On the asymptotic behavior of flood peak distributions, Hydrol. Earth Syst. Sci., 10, 233–243, https://doi.org/10.5194/hess-10-233-2006, 2006. es_ES
dc.description.references Gioia, A., Iacobellis, V., Manfreda, S., and Fiorentino, M.: Runoff thresholds in derived flood frequency distributions, Hydrol. Earth Syst. Sci., 12, 1295–1307, https://doi.org/10.5194/hess-12-1295-2008, 2008. es_ES
dc.description.references Haberlandt, U. and Radtke, I.: Hydrological model calibration for derived flood frequency analysis using stochastic rainfall and probability distributions of peak flows, Hydrol. Earth Syst. Sci., 18, 353–365, https://doi.org/10.5194/hess-18-353-2014, 2014. es_ES
dc.description.references Kay, A. L., Jones, R. G., and Reynard, N. S.: RCM rainfall for UK flood frequency estimation, II. Climate change results, J. Hydrol., 318, 163–172, https://doi.org/10.1016/j.jhydrol.2005.06.013, 2006. es_ES
dc.description.references Koutsoyiannis, D.: Uncertainty, entropy, scaling and hydrological stochastics, 1. Marginal distributional properties of hydrological processes and state scaling, Hydrolog. Sci. J., 50, 381–404, https://doi.org/10.1623/hysj.50.3.381.65031, 2005. es_ES
dc.description.references Koutsoyiannis, D. and Montanari, A.: Negligent killing of scientific concepts: the stationarity case, Hydrolog. Sci. J., https://doi.org/10.1080/02626667.2014.959959, in press, 2014. es_ES
dc.description.references Koutsoyiannis, D., Montanari, A., Lins, H. F., and Cohn, T. A.: Discussion of "The implications of projected climate change for freshwater resources and their management". Climate, hydrology and freshwater: towards an interactive incorporation of hydrological experience into climate research, Hydrolog. Sci. J., 54, 394–405, https://doi.org/10.1623/hysj.54.2.394, 2009. es_ES
dc.description.references Kundzewicz, Z. W., Mata, L. J., Arnell, N. W., Döll, P., Kabat, P., Jiménez, B., Miller, K. A., Oki, T., Sen, Z., and Shiklomanov, I. A.: Freshwater resources and their management, Climate Change 2007: Impacts, Adaptation and Vulnerability, in: Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, edited by: Parry, M. L., Canziani, O. F., Palutikof, J. P., van der Linden, P. J., and Hanson, C. E., Cambridge University Press, Cambridge, UK, 173–210, 2007. es_ES
dc.description.references Kundzewicz, Z. W., Mata, L. J., Arnell, N. W., Döll, P., Jimenez, B., Miller, K., Oki, T., Sen, Z., and Shiklomanov, I.: The implications of projected climate change for freshwater resources and their management, Hydrolog. Sci. J., 53, 3–10, https://doi.org/10.1623/hysj.53.1.3, 2008. es_ES
dc.description.references Madsen, H. and Rosbjerg, D.: The partial duration series method in regional index-flood modeling, Water Resour. Res., 33, 737–746, https://doi.org/10.1029/96WR03847, 1997. es_ES
dc.description.references Madsen, H., Rasmussen, P. F., and Rosbjerg, D.: Comparison of annual maximum series and partial duration series for modeling extreme hydrologic events, 1. At-site modeling, Water Resour. Res., 33, 747–757, https://doi.org/10.1029/96WR03848, 1997. es_ES
dc.description.references Milly, P. C. D., Wetherald, R. T., Dunne1, K. A., and Delworth, T. L.: Increasing risk of great floods in a changing climate, Nature, 415, 514–517, https://doi.org/10.1038/415514a, 2002. es_ES
dc.description.references Montanari, A. and Koutsoyiannis, D.: Modeling and mitigating natural hazards: Stationarity is immortal!, Water Resour. Res., 50, 9748–9756, https://doi.org/10.1002/2014WR016092, 2014. es_ES
dc.description.references Olivares Guillem, A.: Modelación hidrológica pseudo-distribuida del barranco del Carraixet: aplicación al episodio de octubre de 2000, Cuad. De Geogr., 76, 155–182, 2004. es_ES
dc.description.references Papa, F. and Adams, B. J.: Application of derived probability and dynamic programming techniques to planning regional stormwater management systems, Water Sci. Technol., 36, 227–234, 1997. es_ES
dc.description.references Preti, F., Forzieri, G., and Chirico, G. B.: Forest cover influence on regional flood frequency assessment in Mediterranean catchments, Hydrol. Earth Syst. Sci., 15, 3077–3090, https://doi.org/10.5194/hess-15-3077-2011, 2011. es_ES
dc.description.references Sangati, M., Borga, M., Rabuffetti, D., and Bechini, R.: Influence of rainfall and soil properties spatial aggregation on extreme flash flood response modelling: An evaluation based on the Sesia river basin, North Western Italy, Adv. Water Resour., 32, 1090–1106, 2009. es_ES
dc.description.references SCS: National Engineering Handbook, Section 4: Hydrology, Soil Conservation Service, USDA, Washington, D.C., 1971. es_ES
dc.description.references Singh, V. P. and Guo, H.: Parameter estimation for 3-parameter generalized Pareto distribution by the principle of maximum entropy (POME), Hydrolog. Sci. J., 40, 165–181, https://doi.org/10.1080/02626669509491402, 1995. es_ES
dc.description.references Smith, R. L.: Threshold methods for sample extremes, in: Statistical Extremes and Applications, edited by: de Oliveira, J. T., Reidel, Dordrecht, 621–638, 1984. es_ES
dc.description.references Soulis, K. X. and Valiantzas, J. D.: SCS-CN parameter determination using rainfall–runoff data in heterogeneous watersheds – the two-CN system approach, Hydrol. Earth Syst. Sci., 16, 1001–1015, https://doi.org/10.5194/hess-16-1001-2012, 2012. es_ES
dc.description.references Troch, P. A., Carrillo, G., Sivapalan, M., Wagener, T., and Sawicz, K.: Climate–vegetation–soil interactions and long-term hydrologic partitioning: signatures of catchment co-evolution, Hydrol. Earth Syst. Sci., 17, 2209–2217, https://doi.org/10.5194/hess-17-2209-2013, 2013. es_ES
dc.description.references Tzavelas, G., Paliatsos, A. G., and Nastos, P. T.: Brief communication "Models for the exceedances of high thresholds over the precipitation daily totals in Athens, Greece", Nat. Hazards Earth Syst. Sci., 10, 105–108, https://doi.org/10.5194/nhess-10-105-2010, 2010. es_ES
dc.description.references Viglione, A. and Blöschl, G.: On the role of storm duration in the mapping of rainfall to flood return periods, Hydrol. Earth Syst. Sci., 13, 205–216, https://doi.org/10.5194/hess-13-205-2009, 2009. es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem