Mostrar el registro sencillo del ítem
dc.contributor.author | Andrés Doménech, Ignacio | es_ES |
dc.contributor.author | García Bartual, Rafael Luis | es_ES |
dc.contributor.author | Montanari, Alberto | es_ES |
dc.contributor.author | Marco Segura, Juan Bautista | es_ES |
dc.date.accessioned | 2016-04-15T10:43:44Z | |
dc.date.available | 2016-04-15T10:43:44Z | |
dc.date.issued | 2015 | |
dc.identifier.issn | 1027-5606 | |
dc.identifier.uri | http://hdl.handle.net/10251/62605 | |
dc.description.abstract | Measuring the impact of climate change on flood frequency is a complex and controversial task. Identifying hydrological changes is difficult given the factors, other than climate variability, which lead to significant variations in runoff series. The catchment filtering role is often overlooked and thus may hinder the correct identification of climate variability signatures on hydrological processes. Does climate variability necessarily imply hydrological variability? This research aims to analytically derive the flood frequency distribution based on realistic hypotheses about the rainfall process and the rainfall runoff transformation. The annual maximum peak flow probability distribution is analytically derived to quantify the filtering effect of the rainfall runoff process on climate change. A sensitivity analysis is performed according to typical semi-arid Mediterranean climatic and hydrological conditions, assuming a simple but common scheme for the rainfall runoff transformation in small-size ungauged catchments, i.e. the CN-SCS model. Variability in annual maximum peak flows and its statistical significance are analysed when changes in the climatic input are introduced. Results show that depending on changes in the annual number of rainfall events, the catchment filtering role is particularly significant, especially when the event rainfall volume distribution is not strongly skewed. Results largely depend on the return period: for large return periods, peak flow variability is significantly affected by the climatic input, while for lower return periods, infiltration processes smooth out the impact of climate change | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | European Geosciences Union (EGU) | es_ES |
dc.relation.ispartof | Hydrology and Earth System Sciences | es_ES |
dc.rights | Reconocimiento (by) | es_ES |
dc.subject | Climate change | es_ES |
dc.subject | Rainfall-runoff | es_ES |
dc.subject.classification | INGENIERIA HIDRAULICA | es_ES |
dc.title | Climate and hydrological variability: the catchment filtering role | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.5194/hess-19-379-2015 | |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Ingeniería Hidráulica y Medio Ambiente - Departament d'Enginyeria Hidràulica i Medi Ambient | es_ES |
dc.description.bibliographicCitation | Andrés Doménech, I.; García Bartual, RL.; Montanari, A.; Marco Segura, JB. (2015). Climate and hydrological variability: the catchment filtering role. Hydrology and Earth System Sciences. 19(1):379-387. doi:10.5194/hess-19-379-2015 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | http://dx.doi.org/10.5194/hess-19-379-2015 | es_ES |
dc.description.upvformatpinicio | 379 | es_ES |
dc.description.upvformatpfin | 387 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 19 | es_ES |
dc.description.issue | 1 | es_ES |
dc.relation.senia | 283131 | es_ES |
dc.description.references | Allamano, P., Claps, P., and Laio, F.: Global warming increases flood risk in mountainous areas, Geophys. Res. Lett., 36, L24404, https://doi.org/10.1029/2009GL041395, 2009. | es_ES |
dc.description.references | Andrés-Doménech, I., Montanari, A., and Marco, J. B.: Stochastic rainfall analysis for storm tank performance evaluation, Hydrol. Earth Syst. Sci., 14, 1221–1232, https://doi.org/10.5194/hess-14-1221-2010, 2010. | es_ES |
dc.description.references | Andrés-Doménech, I., Montanari, A., and Marco, J. B.: Efficiency of Storm Detention Tanks for Urban Drainage Systems under Climate Variability, J. Water Resour. Pl. Manage., 138, 36–46, https://doi.org/10.1061/(ASCE)WR.1943-5452.0000144, 2012. | es_ES |
dc.description.references | Bloeschl, G. and Montanari, A.: Climate change impacts – throwing the dice?, Hydrol. Process., 24, 374–381, https://doi.org/10.1002/hyp.7574, 2010. | es_ES |
dc.description.references | Botter, G., Basso, S., Rodriguez-Iturbe, I., and Rinaldo, A.: Resilience of river flow regimes, P. Natl. Acad. Sci. USA, 110, 12925–12930, https://doi.org/10.1073/pnas.1311920110, 2013. | es_ES |
dc.description.references | Brunet, M., Casado, M. J., de Castro, M., Galán, P., López, J. A., Martín, J. M., Pastor, A., Petisco, E., Ramos, P., Ribalaygua, J., Rodríguez, E., Sanz, I., and Torres, L.: Generación de escenarios regionalizados de cambio climático para España, Agencia Estatal de Meteorología (AEMET), Ministerio de Medio Ambiente y Medio Rural y Marino, Madrid, 2009. | es_ES |
dc.description.references | Camarasa Belmonte, A. M.: Génesis de avenidas en pequeñas cuencas semiáridas: la Rambla de Poyo (Valencia), Cuad. De Geogr., 48, 81–104, 1990. | es_ES |
dc.description.references | De Zea Bermudez, P. and Kotz, S.: Parameter estimation of the generalized Pareto distribution – Part I, J. Stat. Plan. Infer., 140-6, 1353–1373, https://doi.org/10.1016/j.jspi.2008.11.019, 2010. | es_ES |
dc.description.references | Di Baldassarre, G., Montanari, A., Lins, H., Koutsoyiannis, D., Brandimarte, L., and Blöschl, G.: Flood fatalities in Africa: From diagnosis to mitigation, Geophys. Res. Lett., 37, L22402, https://doi.org/10.1029/2010GL045467, 2010. | es_ES |
dc.description.references | Eagleson, P. S.: Dynamics of flood frequency, Water Resour. Res., 8, 878–898, https://doi.org/10.1029/WR008i004p00878, 1972. | es_ES |
dc.description.references | Ferrer Polo, J.: Recomendaciones para el cálculo hidrometeorológico de avenidas, Centro de Estudios y Experimentación de Obras Públicas, Madrid, 1993. | es_ES |
dc.description.references | Gaume, E.: On the asymptotic behavior of flood peak distributions, Hydrol. Earth Syst. Sci., 10, 233–243, https://doi.org/10.5194/hess-10-233-2006, 2006. | es_ES |
dc.description.references | Gioia, A., Iacobellis, V., Manfreda, S., and Fiorentino, M.: Runoff thresholds in derived flood frequency distributions, Hydrol. Earth Syst. Sci., 12, 1295–1307, https://doi.org/10.5194/hess-12-1295-2008, 2008. | es_ES |
dc.description.references | Haberlandt, U. and Radtke, I.: Hydrological model calibration for derived flood frequency analysis using stochastic rainfall and probability distributions of peak flows, Hydrol. Earth Syst. Sci., 18, 353–365, https://doi.org/10.5194/hess-18-353-2014, 2014. | es_ES |
dc.description.references | Kay, A. L., Jones, R. G., and Reynard, N. S.: RCM rainfall for UK flood frequency estimation, II. Climate change results, J. Hydrol., 318, 163–172, https://doi.org/10.1016/j.jhydrol.2005.06.013, 2006. | es_ES |
dc.description.references | Koutsoyiannis, D.: Uncertainty, entropy, scaling and hydrological stochastics, 1. Marginal distributional properties of hydrological processes and state scaling, Hydrolog. Sci. J., 50, 381–404, https://doi.org/10.1623/hysj.50.3.381.65031, 2005. | es_ES |
dc.description.references | Koutsoyiannis, D. and Montanari, A.: Negligent killing of scientific concepts: the stationarity case, Hydrolog. Sci. J., https://doi.org/10.1080/02626667.2014.959959, in press, 2014. | es_ES |
dc.description.references | Koutsoyiannis, D., Montanari, A., Lins, H. F., and Cohn, T. A.: Discussion of "The implications of projected climate change for freshwater resources and their management". Climate, hydrology and freshwater: towards an interactive incorporation of hydrological experience into climate research, Hydrolog. Sci. J., 54, 394–405, https://doi.org/10.1623/hysj.54.2.394, 2009. | es_ES |
dc.description.references | Kundzewicz, Z. W., Mata, L. J., Arnell, N. W., Döll, P., Kabat, P., Jiménez, B., Miller, K. A., Oki, T., Sen, Z., and Shiklomanov, I. A.: Freshwater resources and their management, Climate Change 2007: Impacts, Adaptation and Vulnerability, in: Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, edited by: Parry, M. L., Canziani, O. F., Palutikof, J. P., van der Linden, P. J., and Hanson, C. E., Cambridge University Press, Cambridge, UK, 173–210, 2007. | es_ES |
dc.description.references | Kundzewicz, Z. W., Mata, L. J., Arnell, N. W., Döll, P., Jimenez, B., Miller, K., Oki, T., Sen, Z., and Shiklomanov, I.: The implications of projected climate change for freshwater resources and their management, Hydrolog. Sci. J., 53, 3–10, https://doi.org/10.1623/hysj.53.1.3, 2008. | es_ES |
dc.description.references | Madsen, H. and Rosbjerg, D.: The partial duration series method in regional index-flood modeling, Water Resour. Res., 33, 737–746, https://doi.org/10.1029/96WR03847, 1997. | es_ES |
dc.description.references | Madsen, H., Rasmussen, P. F., and Rosbjerg, D.: Comparison of annual maximum series and partial duration series for modeling extreme hydrologic events, 1. At-site modeling, Water Resour. Res., 33, 747–757, https://doi.org/10.1029/96WR03848, 1997. | es_ES |
dc.description.references | Milly, P. C. D., Wetherald, R. T., Dunne1, K. A., and Delworth, T. L.: Increasing risk of great floods in a changing climate, Nature, 415, 514–517, https://doi.org/10.1038/415514a, 2002. | es_ES |
dc.description.references | Montanari, A. and Koutsoyiannis, D.: Modeling and mitigating natural hazards: Stationarity is immortal!, Water Resour. Res., 50, 9748–9756, https://doi.org/10.1002/2014WR016092, 2014. | es_ES |
dc.description.references | Olivares Guillem, A.: Modelación hidrológica pseudo-distribuida del barranco del Carraixet: aplicación al episodio de octubre de 2000, Cuad. De Geogr., 76, 155–182, 2004. | es_ES |
dc.description.references | Papa, F. and Adams, B. J.: Application of derived probability and dynamic programming techniques to planning regional stormwater management systems, Water Sci. Technol., 36, 227–234, 1997. | es_ES |
dc.description.references | Preti, F., Forzieri, G., and Chirico, G. B.: Forest cover influence on regional flood frequency assessment in Mediterranean catchments, Hydrol. Earth Syst. Sci., 15, 3077–3090, https://doi.org/10.5194/hess-15-3077-2011, 2011. | es_ES |
dc.description.references | Sangati, M., Borga, M., Rabuffetti, D., and Bechini, R.: Influence of rainfall and soil properties spatial aggregation on extreme flash flood response modelling: An evaluation based on the Sesia river basin, North Western Italy, Adv. Water Resour., 32, 1090–1106, 2009. | es_ES |
dc.description.references | SCS: National Engineering Handbook, Section 4: Hydrology, Soil Conservation Service, USDA, Washington, D.C., 1971. | es_ES |
dc.description.references | Singh, V. P. and Guo, H.: Parameter estimation for 3-parameter generalized Pareto distribution by the principle of maximum entropy (POME), Hydrolog. Sci. J., 40, 165–181, https://doi.org/10.1080/02626669509491402, 1995. | es_ES |
dc.description.references | Smith, R. L.: Threshold methods for sample extremes, in: Statistical Extremes and Applications, edited by: de Oliveira, J. T., Reidel, Dordrecht, 621–638, 1984. | es_ES |
dc.description.references | Soulis, K. X. and Valiantzas, J. D.: SCS-CN parameter determination using rainfall–runoff data in heterogeneous watersheds – the two-CN system approach, Hydrol. Earth Syst. Sci., 16, 1001–1015, https://doi.org/10.5194/hess-16-1001-2012, 2012. | es_ES |
dc.description.references | Troch, P. A., Carrillo, G., Sivapalan, M., Wagener, T., and Sawicz, K.: Climate–vegetation–soil interactions and long-term hydrologic partitioning: signatures of catchment co-evolution, Hydrol. Earth Syst. Sci., 17, 2209–2217, https://doi.org/10.5194/hess-17-2209-2013, 2013. | es_ES |
dc.description.references | Tzavelas, G., Paliatsos, A. G., and Nastos, P. T.: Brief communication "Models for the exceedances of high thresholds over the precipitation daily totals in Athens, Greece", Nat. Hazards Earth Syst. Sci., 10, 105–108, https://doi.org/10.5194/nhess-10-105-2010, 2010. | es_ES |
dc.description.references | Viglione, A. and Blöschl, G.: On the role of storm duration in the mapping of rainfall to flood return periods, Hydrol. Earth Syst. Sci., 13, 205–216, https://doi.org/10.5194/hess-13-205-2009, 2009. | es_ES |