Mostrar el registro sencillo del ítem
dc.contributor.author | García García, Fernando | es_ES |
dc.contributor.author | Guijarro Martínez, Francisco | es_ES |
dc.contributor.author | Moya Clemente, Ismael | es_ES |
dc.date.accessioned | 2016-04-15T13:27:35Z | |
dc.date.available | 2016-04-15T13:27:35Z | |
dc.date.issued | 2013 | |
dc.identifier.issn | 1611-1699 | |
dc.identifier.uri | http://hdl.handle.net/10251/62638 | |
dc.description | This is an author's accepted manuscript of an article published in: “Journal of Business Economics and Management"; Volume 14, Issue 4, 2013; copyright Taylor & Francis; available online at: http://dx.doi.org/10.3846/16111699.2012.668859 | es_ES |
dc.description.abstract | Index tracking seeks to minimize the unsystematic risk component by imitating the movements of a reference index. Partial index tracking only considers a subset of the stocks in the index, enabling a substantial cost reduction in comparison with full tracking. Nevertheless, when heterogeneous investment profiles are to be satisfied, traditional index tracking techniques may need different stocks to build the different portfolios. The aim of this paper is to propose a methodology that enables a fund s manager to satisfy different clients investment profiles but using in all cases the same subset of stocks, and considering not only one particular criterion but a compromise between several criteria. For this purpose we use a mathematical programming model that considers the tracking error variance, the excess return and the variance of the portfolio plus the curvature of the tracking frontier. The curvature is not defined for a particular portfolio, but for all the portfolios in the tracking frontier. This way funds managers can offer their clients a wide range of risk-return combinations just picking the appropriate portfolio in the frontier, all of these portfolios sharing the same shares but with different weights. An example of our proposal is applied on the S&P 100. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Taylor & Francis: SSH Journals | es_ES |
dc.relation.ispartof | Journal of Business Economics and Management | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Index tracking | es_ES |
dc.subject | Frontier curvature | es_ES |
dc.subject | Tracking error variance | es_ES |
dc.subject | Excess return | es_ES |
dc.subject | Portfolio variance | es_ES |
dc.subject | Mean-variance model | es_ES |
dc.subject | Portfolio selection | es_ES |
dc.subject.classification | ECONOMIA FINANCIERA Y CONTABILIDAD | es_ES |
dc.title | A multiobjective model for passive portfolio management: an application on the S&P 100 index | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.3846/16111699.2012.668859 | |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Economía y Ciencias Sociales - Departament d'Economia i Ciències Socials | es_ES |
dc.description.bibliographicCitation | García García, F.; Guijarro Martínez, F.; Moya Clemente, I. (2013). A multiobjective model for passive portfolio management: an application on the S&P 100 index. Journal of Business Economics and Management. 14(4):758-775. doi:10.3846/16111699.2012.668859 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | http://dx.doi.org/10.3846/16111699.2012.668859 | es_ES |
dc.description.upvformatpinicio | 758 | es_ES |
dc.description.upvformatpfin | 775 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 14 | es_ES |
dc.description.issue | 4 | es_ES |
dc.relation.senia | 248434 | es_ES |
dc.identifier.eissn | 2029-4433 | |
dc.description.references | Aktan, B., Korsakienė, R., & Smaliukienė, R. (2010). TIME‐VARYING VOLATILITY MODELLING OF BALTIC STOCK MARKETS. Journal of Business Economics and Management, 11(3), 511-532. doi:10.3846/jbem.2010.25 | es_ES |
dc.description.references | Ballestero, E., & Romero, C. (1991). A theorem connecting utility function optimization and compromise programming. Operations Research Letters, 10(7), 421-427. doi:10.1016/0167-6377(91)90045-q | es_ES |
dc.description.references | Beasley, J. E. (1990). OR-Library: Distributing Test Problems by Electronic Mail. Journal of the Operational Research Society, 41(11), 1069-1072. doi:10.1057/jors.1990.166 | es_ES |
dc.description.references | Beasley, J. E., Meade, N., & Chang, T.-J. (2003). An evolutionary heuristic for the index tracking problem. European Journal of Operational Research, 148(3), 621-643. doi:10.1016/s0377-2217(02)00425-3 | es_ES |
dc.description.references | Canakgoz, N. A., & Beasley, J. E. (2009). Mixed-integer programming approaches for index tracking and enhanced indexation. European Journal of Operational Research, 196(1), 384-399. doi:10.1016/j.ejor.2008.03.015 | es_ES |
dc.description.references | Connor, G., & Leland, H. (1995). Cash Management for Index Tracking. Financial Analysts Journal, 51(6), 75-80. doi:10.2469/faj.v51.n6.1952 | es_ES |
dc.description.references | Corielli, F., & Marcellino, M. (2006). Factor based index tracking. Journal of Banking & Finance, 30(8), 2215-2233. doi:10.1016/j.jbankfin.2005.07.012 | es_ES |
dc.description.references | Derigs, U., & Nickel, N.-H. (2004). On a Local-Search Heuristic for a Class of Tracking Error Minimization Problems in Portfolio Management. Annals of Operations Research, 131(1-4), 45-77. doi:10.1023/b:anor.0000039512.98833.5a | es_ES |
dc.description.references | Dose, C., & Cincotti, S. (2005). Clustering of financial time series with application to index and enhanced index tracking portfolio. Physica A: Statistical Mechanics and its Applications, 355(1), 145-151. doi:10.1016/j.physa.2005.02.078 | es_ES |
dc.description.references | Focardi, S. M., & Fabozzi 3, F. J. (2004). A methodology for index tracking based on time-series clustering. Quantitative Finance, 4(4), 417-425. doi:10.1080/14697680400008668 | es_ES |
dc.description.references | Gaivoronski, A. A., Krylov, S., & van der Wijst, N. (2005). Optimal portfolio selection and dynamic benchmark tracking. European Journal of Operational Research, 163(1), 115-131. doi:10.1016/j.ejor.2003.12.001 | es_ES |
dc.description.references | Hallerbach, W. G., & Spronk, J. (2002). The relevance of MCDM for financial decisions. Journal of Multi-Criteria Decision Analysis, 11(4-5), 187-195. doi:10.1002/mcda.328 | es_ES |
dc.description.references | Jarrett, J. E., & Schilling, J. (2008). DAILY VARIATION AND PREDICTING STOCK MARKET RETURNS FOR THE FRANKFURTER BÖRSE (STOCK MARKET). Journal of Business Economics and Management, 9(3), 189-198. doi:10.3846/1611-1699.2008.9.189-198 | es_ES |
dc.description.references | Roll, R. (1992). A Mean/Variance Analysis of Tracking Error. The Journal of Portfolio Management, 18(4), 13-22. doi:10.3905/jpm.1992.701922 | es_ES |
dc.description.references | Rudolf, M., Wolter, H.-J., & Zimmermann, H. (1999). A linear model for tracking error minimization. Journal of Banking & Finance, 23(1), 85-103. doi:10.1016/s0378-4266(98)00076-4 | es_ES |
dc.description.references | Ruiz-Torrubiano, R., & Suárez, A. (2008). A hybrid optimization approach to index tracking. Annals of Operations Research, 166(1), 57-71. doi:10.1007/s10479-008-0404-4 | es_ES |
dc.description.references | Rutkauskas, A. V., & Stasytyte, V. (s. f.). Decision Making Strategies in Global Exchange and Capital Markets. Advances and Innovations in Systems, Computing Sciences and Software Engineering, 17-22. doi:10.1007/978-1-4020-6264-3_4 | es_ES |
dc.description.references | Tabata, Y., & Takeda, E. (1995). Bicriteria Optimization Problem of Designing an Index Fund. Journal of the Operational Research Society, 46(8), 1023-1032. doi:10.1057/jors.1995.139 | es_ES |
dc.description.references | Teresienė, D. (2009). LITHUANIAN STOCK MARKET ANALYSIS USING A SET OF GARCH MODELS. Journal of Business Economics and Management, 10(4), 349-360. doi:10.3846/1611-1699.2009.10.349-360 | es_ES |