- -

Extraction of thermal characteristics of surrounding geological layers of a geothermal heat exchanger by 3D numerical simulations

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Extraction of thermal characteristics of surrounding geological layers of a geothermal heat exchanger by 3D numerical simulations

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Aranzabal, Nordin es_ES
dc.contributor.author Martos, Julio es_ES
dc.contributor.author Montero Reguera, Álvaro Enrique es_ES
dc.contributor.author Monreal Mengual, Llúcia es_ES
dc.contributor.author Soret, Jesús es_ES
dc.contributor.author Torres, Jose es_ES
dc.contributor.author García Olcina, Raimundo es_ES
dc.date.accessioned 2016-04-19T14:28:30Z
dc.date.available 2016-04-19T14:28:30Z
dc.date.issued 2016-01-19
dc.identifier.issn 1359-4311
dc.identifier.uri http://hdl.handle.net/10251/62747
dc.description.abstract Ground thermal conductivity and borehole thermal resistance are key parameters for the design of closed Ground-Source Heat Pump (GSHP) systems. The standard method to determine these parameters is the Thermal Response Test (TRT). This test analyses the ground thermal response to a constant heat power injection or extraction by measuring inlet and outlet temperatures of the fluid at the top of the borehole heat exchanger. These data are commonly evaluated by models considering the ground being homogeneous and isotropic. This approach estimates an effective ground thermal conductivity representing an average of the thermal conductivity of the different layers crossed by perforation. In order to obtain a thermal conductivity profile of the ground as a function of depth, two additional inputs are needed; first, a measurement of the borehole temperature profile and, second, an analysis procedure taking into account ground is not homogeneous. This work presents an analysis procedure, complementing the standard TRT analysis, estimating the thermal conductivity profile from a temperature profile along the borehole during the test. The analysis procedure is implemented by a 3D Finite Element Model (FEM) in which depth depending thermal conductivity of the subsoil is estimated by fitting simulation results with experimental data. The methodology is evaluated by the recorded temperature profiles throughout a TRT in a BHE (Borehole Heat Exchanger) monitored facility, which allowed the detection of a highly conductive layer at 25 meters depth. © 2015 Elsevier Ltd. All rights reserved. es_ES
dc.description.sponsorship This work has been supported by the EIT Climate-KIC, a body of the European Union inside the PhD Programme of TBE Platform. en_EN
dc.language Inglés es_ES
dc.publisher Elsevier es_ES
dc.relation.ispartof Applied Thermal Engineering es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Energy efficiency es_ES
dc.subject Ground coupled heat pump es_ES
dc.subject Heat transfer es_ES
dc.subject Numerical simulation es_ES
dc.subject Technic-Economical optimization es_ES
dc.subject Thermal Response Test es_ES
dc.subject.classification MATEMATICA APLICADA es_ES
dc.subject.classification MAQUINAS Y MOTORES TERMICOS es_ES
dc.title Extraction of thermal characteristics of surrounding geological layers of a geothermal heat exchanger by 3D numerical simulations es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1016/j.applthermaleng.2015.12.109
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Termodinámica Aplicada - Departament de Termodinàmica Aplicada es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada es_ES
dc.description.bibliographicCitation Aranzabal, N.; Martos, J.; Montero Reguera, ÁE.; Monreal Mengual, L.; Soret, J.; Torres, J.; García Olcina, R. (2016). Extraction of thermal characteristics of surrounding geological layers of a geothermal heat exchanger by 3D numerical simulations. Applied Thermal Engineering. 99:92-102. doi:10.1016/j.applthermaleng.2015.12.109 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/10.1016/j.applthermaleng.2015.12.109 es_ES
dc.description.upvformatpinicio 92 es_ES
dc.description.upvformatpfin 102 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 99 es_ES
dc.relation.senia 303636 es_ES
dc.contributor.funder EIT Climate-KIC es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem