Abellanas M, Hurtado F, Sacristán V, Icking C, Ma L, Klein R, Langetep E, Palop B (2003) Voronoi diagram for services neighboring a highway. Inf Process Lett 86:283–288
Abellanas M, Hurtado F, Palop B (2008) The heavy luggage metric. Int J Comput Geom Appl 18:295–306
Bae SW, Kim JH, Chwa KY (2009) Optimal construction of the city voronoi diagram. Int J Comput Geom 19:95–117
[+]
Abellanas M, Hurtado F, Sacristán V, Icking C, Ma L, Klein R, Langetep E, Palop B (2003) Voronoi diagram for services neighboring a highway. Inf Process Lett 86:283–288
Abellanas M, Hurtado F, Palop B (2008) The heavy luggage metric. Int J Comput Geom Appl 18:295–306
Bae SW, Kim JH, Chwa KY (2009) Optimal construction of the city voronoi diagram. Int J Comput Geom 19:95–117
Berman O, Krass D, Drezner Z (2003) The gradual covering decay location problem on a network. Eur J Oper Res 151:474–480
Blanquero R, Carrizosa E (2009) Continuous location problems and big triangle small triangle: constructing better bounds. J Glob Optim 45:389–402
Cardinal J, Collette S, Hurtado F, Langerman S, Palop B (2008) Optimal location of transportation devices. Comput Geom 41:319–329
Carrizosa E, Rodríguez-Chía A (1997) Weber problems with alternative transportation systems. Eur J Oper Res 97:87–93
Dearing P, Francis RL, Lowe TJ (1976) Convex location problems on tree networks. Oper Res 24:628–642
Görke R, Shin CS, Wolff A (2008) Constructing the city voronoi diagram faster. Int J Comput Geom Appl 18:275–294
Hansen P, Peeters D, Richard D, Thisse JF (1985) The minisum and minimax location problems revisited. Oper Res 33:1251–1265
Horst R, Thoai N (1999) DC programming: overview. J Optim Theory Appl 103:1–43
Kirwan F (1992) Complex algebraic curves. Cambridge University Press, Cambridge
Koolen A, Tamir A (1990) Covering problems. In: Mirchandani P, Francis R (eds) Discrete location theory. Wiley-Interscience, New York
Körner MC, Schöbel A (2010) Weber problems with high–speed lines. TOP 18:223–241
Laporte G, Mesa JA, Ortega FA, Sevillano I (2005) Maximizing trip coverage in the location of a single rapid transit alignment. Ann Oper Res 136:49–63
Laporte G, Mesa JA, Perea F (2010) A game theoretic framework for the robust railway transit network design problem. Transp Res, Part B 44:447–459
Laporte G, Marín A, Mesa JA, Perea F (2011) Designing robust rapid transit networks with alternative routes. J Adv Transp 45:54–65
Márquez-Diez-Canedo J (1987) Fundamentos de Teoría de Optimización. Limusa, México
Ortúzar JD, Willumsen LG (2001) Modelling transport. Wiley, New York
Pfeiffer B, Klamroth K (2008) Unified model for weber problems with continuous and network distances. Comput Oper Res 35:312–326
Plastria F (1992) GBSSS: the generalized big square small square method for planar single-facility location. Eur J Oper Res 62:163–174
Plastria F (2002) Continuous covering location problems. In: Drezner Z, Hamacher H (eds) Facility location: applications and theory. Springer, Berlin
Preparata F, Shamos M (1985) Computational geometry, an introduction. Springer, Berlin
Schöbel A, Scholz D (2010) The big cube small cube solution method for multidimensional facility location problems. Comput Oper Res 37:115–122
Scholz D (2010) Geometric branch & bound methods in global optimization: theory and applications to facility location problems. Ph.D. thesis, Universität Göttingen. To appear at Springer
Scholz D, Schöbel A (2010) The theoretical and empirical rate of convergence for geometric branch-and-bound methods. J Glob Optim 48(3):473–495
[-]