- -

A maximum trip covering location problem with an alternative mode of transportation on tree networks and segments

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

A maximum trip covering location problem with an alternative mode of transportation on tree networks and segments

Mostrar el registro completo del ítem

Koerner, M.; Mesa, JA.; Perea Rojas Marcos, F.; Schoebel, A.; Scholz, D. (2012). A maximum trip covering location problem with an alternative mode of transportation on tree networks and segments. TOP. 22(1):227-253. https://doi.org/10.1007/s11750-012-0251-y

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/62769

Ficheros en el ítem

Metadatos del ítem

Título: A maximum trip covering location problem with an alternative mode of transportation on tree networks and segments
Autor: Koerner, Mark-Christoph Mesa, Juan A. Perea Rojas Marcos, Federico Schoebel, Anita Scholz, Daniel
Entidad UPV: Universitat Politècnica de València. Departamento de Estadística e Investigación Operativa Aplicadas y Calidad - Departament d'Estadística i Investigació Operativa Aplicades i Qualitat
Fecha difusión:
Resumen:
[EN] In this paper the following facility location problem in a mixed planar-network space is considered: We assume that traveling along a given network is faster than traveling within the plane according to the Euclidean ...[+]
Palabras clave: Covering problem , Location , Transportation
Derechos de uso: Reserva de todos los derechos
Fuente:
TOP. (issn: 1134-5764 ) (eissn: 1863-8279 )
DOI: 10.1007/s11750-012-0251-y
Editorial:
Springer
Versión del editor: http://dx.doi.org/10.1007/s11750-012-0251-y
Código del Proyecto:
info:eu-repo/grantAgreement/EC/FP6/021235-2/EU/Algorithms for Robust and on-line Railway optimisation: Improving the validity and reliability of large-scale systems/ARRIVAL/
info:eu-repo/grantAgreement/MICINN//MTM2009-14243/ES/Optimizacion De La Robustez En Analisis De Localizaciones Y Diseño De Redes/
info:eu-repo/grantAgreement/Junta de Andalucía//P09-TEP-5022/ES/Metodologías Para El Diseño, La Planificación Robusta De Redes Y La Operación Mixta Del Transporte Por Ferrocarril. Aspectos Intermodales Y Convergencia Con Las Políticas De La Ue/
info:eu-repo/grantAgreement/Junta de Andalucía//P10-FQM-5849/ES/Nuevos desafíos de la matemática combinatoria: Enfoques no estándares en optimización discreta y álgebra computacional. Aplicaciones/
Agradecimientos:
This work was partially supported by the Future and Emerging Technologies Unit of EC (IST priority-6th FP), under contract no. FP6-021235-2 (project ARRIVAL), by Ministerio de Educacion, Ciencia e Innovacion (Spain)/FEDER ...[+]
Tipo: Artículo

References

Abellanas M, Hurtado F, Sacristán V, Icking C, Ma L, Klein R, Langetep E, Palop B (2003) Voronoi diagram for services neighboring a highway. Inf Process Lett 86:283–288

Abellanas M, Hurtado F, Palop B (2008) The heavy luggage metric. Int J Comput Geom Appl 18:295–306

Bae SW, Kim JH, Chwa KY (2009) Optimal construction of the city voronoi diagram. Int J Comput Geom 19:95–117 [+]
Abellanas M, Hurtado F, Sacristán V, Icking C, Ma L, Klein R, Langetep E, Palop B (2003) Voronoi diagram for services neighboring a highway. Inf Process Lett 86:283–288

Abellanas M, Hurtado F, Palop B (2008) The heavy luggage metric. Int J Comput Geom Appl 18:295–306

Bae SW, Kim JH, Chwa KY (2009) Optimal construction of the city voronoi diagram. Int J Comput Geom 19:95–117

Berman O, Krass D, Drezner Z (2003) The gradual covering decay location problem on a network. Eur J Oper Res 151:474–480

Blanquero R, Carrizosa E (2009) Continuous location problems and big triangle small triangle: constructing better bounds. J Glob Optim 45:389–402

Cardinal J, Collette S, Hurtado F, Langerman S, Palop B (2008) Optimal location of transportation devices. Comput Geom 41:319–329

Carrizosa E, Rodríguez-Chía A (1997) Weber problems with alternative transportation systems. Eur J Oper Res 97:87–93

Dearing P, Francis RL, Lowe TJ (1976) Convex location problems on tree networks. Oper Res 24:628–642

Görke R, Shin CS, Wolff A (2008) Constructing the city voronoi diagram faster. Int J Comput Geom Appl 18:275–294

Hansen P, Peeters D, Richard D, Thisse JF (1985) The minisum and minimax location problems revisited. Oper Res 33:1251–1265

Horst R, Thoai N (1999) DC programming: overview. J Optim Theory Appl 103:1–43

Kirwan F (1992) Complex algebraic curves. Cambridge University Press, Cambridge

Koolen A, Tamir A (1990) Covering problems. In: Mirchandani P, Francis R (eds) Discrete location theory. Wiley-Interscience, New York

Körner MC, Schöbel A (2010) Weber problems with high–speed lines. TOP 18:223–241

Laporte G, Mesa JA, Ortega FA, Sevillano I (2005) Maximizing trip coverage in the location of a single rapid transit alignment. Ann Oper Res 136:49–63

Laporte G, Mesa JA, Perea F (2010) A game theoretic framework for the robust railway transit network design problem. Transp Res, Part B 44:447–459

Laporte G, Marín A, Mesa JA, Perea F (2011) Designing robust rapid transit networks with alternative routes. J Adv Transp 45:54–65

Márquez-Diez-Canedo J (1987) Fundamentos de Teoría de Optimización. Limusa, México

Ortúzar JD, Willumsen LG (2001) Modelling transport. Wiley, New York

Pfeiffer B, Klamroth K (2008) Unified model for weber problems with continuous and network distances. Comput Oper Res 35:312–326

Plastria F (1992) GBSSS: the generalized big square small square method for planar single-facility location. Eur J Oper Res 62:163–174

Plastria F (2002) Continuous covering location problems. In: Drezner Z, Hamacher H (eds) Facility location: applications and theory. Springer, Berlin

Preparata F, Shamos M (1985) Computational geometry, an introduction. Springer, Berlin

Schöbel A, Scholz D (2010) The big cube small cube solution method for multidimensional facility location problems. Comput Oper Res 37:115–122

Scholz D (2010) Geometric branch & bound methods in global optimization: theory and applications to facility location problems. Ph.D. thesis, Universität Göttingen. To appear at Springer

Scholz D, Schöbel A (2010) The theoretical and empirical rate of convergence for geometric branch-and-bound methods. J Glob Optim 48(3):473–495

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem