- -

The birth of airplane stability theory

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

  • Estadisticas de Uso

The birth of airplane stability theory

Show full item record

Magraner Rullan, JP.; Martinez-Val, R. (2014). The birth of airplane stability theory. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering. 228(9):1498-1506. doi:10.1177/0954410013494139

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/62773

Files in this item

Item Metadata

Title: The birth of airplane stability theory
Author: Magraner Rullan, José Pedro Martinez-Val, R.
UPV Unit: Universitat Politècnica de València. Departamento de Máquinas y Motores Térmicos - Departament de Màquines i Motors Tèrmics
Issued date:
Abstract:
Airplane stability theory was born at the end of the XIX century and matured around 100 years ago, when airplanes were hardly controllable yet. The success and safety of flights in the pioneer years depended upon largely ...[+]
Subjects: Aviation history , Airplane stability , Phugoid , Pioneer flight dynamics
Copyrigths: Reserva de todos los derechos
Source:
Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering. (issn: 0954-4100 )
DOI: 10.1177/0954410013494139
Publisher:
SAGE Publications (UK and US)
Publisher version: http://dx.doi.org/10.1177/0954410013494139
Type: Artículo

References

PERKINS, C. D. (1970). Development of airplane stability and control technology /1970 Von Karman Lecture/. Journal of Aircraft, 7(4), 290-301. doi:10.2514/3.44167

Abzug, M. J., & Larrabee, E. E. (2002). Airplane Stability and Control, Second Edition. doi:10.1017/cbo9780511607141

Graham, W. R. (1999). Asymptotic analysis of the classical aircraft stability equations. The Aeronautical Journal, 103(1020), 95-103. doi:10.1017/s0001924000027792 [+]
PERKINS, C. D. (1970). Development of airplane stability and control technology /1970 Von Karman Lecture/. Journal of Aircraft, 7(4), 290-301. doi:10.2514/3.44167

Abzug, M. J., & Larrabee, E. E. (2002). Airplane Stability and Control, Second Edition. doi:10.1017/cbo9780511607141

Graham, W. R. (1999). Asymptotic analysis of the classical aircraft stability equations. The Aeronautical Journal, 103(1020), 95-103. doi:10.1017/s0001924000027792

Bryan, G. H., & Williams, W. E. (1904). The Longitudinal Stability of Aerial Gliders. Proceedings of the Royal Society of London, 73(488-496), 100-116. doi:10.1098/rspl.1904.0017

Wegener, P. P. (1997). What Makes Airplanes Fly? doi:10.1007/978-1-4612-2254-5

Pradeep, S., & Kamesh, S. (1999). Does the Phugoid Frequency Depend on Speed? Journal of Guidance, Control, and Dynamics, 22(2), 372-373. doi:10.2514/2.4391

Phillips, W. F. (2000). Phugoid Approximation for Conventional Airplanes. Journal of Aircraft, 37(1), 30-36. doi:10.2514/2.2586

Pamadi, B. N. (2004). Performance, Stability, Dynamics, and Control of Airplanes, Second Edition. doi:10.2514/4.862274

Ananthkrishnan, N., & Ramadevi, P. (2002). Consistent Approximations to Aircraft Longitudinal Modes. Journal of Guidance, Control, and Dynamics, 25(4), 820-824. doi:10.2514/2.4952

McRuer, D. T., Graham, D., & Ashkenas, I. (1990). Aircraft Dynamics and Automatic Control. doi:10.1515/9781400855988

[-]

recommendations

 

This item appears in the following Collection(s)

Show full item record