- -

A modular neural network scheme applied to fault diagnosis in electric power systems

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

  • Estadisticas de Uso

A modular neural network scheme applied to fault diagnosis in electric power systems

Show simple item record

Files in this item

dc.contributor.author Flores, Agustin es_ES
dc.contributor.author Quiles Cucarella, Eduardo es_ES
dc.contributor.author García Moreno, Emilio es_ES
dc.contributor.author Morant Anglada, Francisco José es_ES
dc.contributor.author Correcher Salvador, Antonio es_ES
dc.date.accessioned 2016-04-21T10:34:34Z
dc.date.available 2016-04-21T10:34:34Z
dc.date.issued 2014-08-25
dc.identifier.issn 1537-744X
dc.identifier.uri http://hdl.handle.net/10251/62793
dc.description.abstract This work proposes a new method for fault diagnosis in electric power systems based on neural modules. With this method the diagnosis is performed by assigning a neural module for each type of component comprising the electric power system, whether it is a transmission line, bus or transformer.The neural modules for buses and transformers comprise two diagnostic levels which take into consideration the logic states of switches and relays, both internal and back-up, with the exception of the neural module for transmission lines which also has a third diagnostic level which takes into account the oscillograms of fault voltages and currents as well as the frequency spectrums of these oscillograms, in order to verify if the transmission line had in fact been subjected to a fault. One important advantage of the diagnostic system proposed is that its implementation does not require the use of a network configurator for the system; it does not depend on the size of the power network nor does it require retraining of the neural modules if the power network increases in size, making its application possible to only one component, a specific area, or the whole context of the power system. es_ES
dc.language Inglés es_ES
dc.publisher Hindawi Publishing Corporation es_ES
dc.relation.ispartof Scientific World Journal es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Mathematics es_ES
dc.subject Computer Science es_ES
dc.subject Medical Laboratory Technology es_ES
dc.subject Physics es_ES
dc.subject.classification INGENIERIA DE SISTEMAS Y AUTOMATICA es_ES
dc.title A modular neural network scheme applied to fault diagnosis in electric power systems es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1155/2014/176463
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería de Sistemas y Automática - Departament d'Enginyeria de Sistemes i Automàtica es_ES
dc.description.bibliographicCitation Flores, A.; Quiles Cucarella, E.; García Moreno, E.; Morant Anglada, FJ.; Correcher Salvador, A. (2014). A modular neural network scheme applied to fault diagnosis in electric power systems. Scientific World Journal. 2014:1-13. doi:10.1155/2014/176463 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/10.1155/2014/176463 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 13 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 2014 es_ES
dc.relation.senia 269443 es_ES
dc.identifier.pmid 25610897 en_EN
dc.identifier.pmcid PMC4182697 en_EN
dc.description.references Yongli, Z., Limin, H., & Jinling, L. (2006). Bayesian Networks-Based Approach for Power Systems Fault Diagnosis. IEEE Transactions on Power Delivery, 21(2), 634-639. doi:10.1109/tpwrd.2005.858774 es_ES
dc.description.references Aggarwal, R., & Song, Y. (1997). Artificial neural networks in power systems. Part 1: General introduction to neural computing. Power Engineering Journal, 11(3), 129-134. doi:10.1049/pe:19970306 es_ES
dc.description.references Faria, L., Silva, A., Vale, Z., & Marques, A. (2009). Training Control Centers’ Operators in Incident Diagnosis and Power Restoration Using Intelligent Tutoring Systems. IEEE Transactions on Learning Technologies, 2(2), 135-147. doi:10.1109/tlt.2009.16 es_ES
dc.description.references Rigatos, G., Piccolo, A., & Siano, P. (2009). Neural network-based approach for early detection of cascading events in electric power systems. IET Generation, Transmission & Distribution, 3(7), 650-665. doi:10.1049/iet-gtd.2008.0475 es_ES
dc.description.references Guo, W., Wen, F., Ledwich, G., Liao, Z., He, X., & Liang, J. (2010). An Analytic Model for Fault Diagnosis in Power Systems Considering Malfunctions of Protective Relays and Circuit Breakers. IEEE Transactions on Power Delivery, 25(3), 1393-1401. doi:10.1109/tpwrd.2010.2048344 es_ES
dc.description.references Ravikumar, B., Thukaram, D., & Khincha, H. P. (2008). Application of support vector machines for fault diagnosis in power transmission system. IET Generation, Transmission & Distribution, 2(1), 119. doi:10.1049/iet-gtd:20070071 es_ES
dc.description.references Aggarwal, R., & Yonghua Song. (1998). Artificial neural networks in power systems. Part 2: Types of artificial neural networks. Power Engineering Journal, 12(1), 41-47. doi:10.1049/pe:19980110 es_ES
dc.description.references Salim, R. H., de Oliveira, K., Filomena, A. D., Resener, M., & Bretas, A. S. (2008). Hybrid Fault Diagnosis Scheme Implementation for Power Distribution Systems Automation. IEEE Transactions on Power Delivery, 23(4), 1846-1856. doi:10.1109/tpwrd.2008.917919 es_ES


This item appears in the following Collection(s)

Show simple item record