Mostrar el registro sencillo del ítem
dc.contributor.author | Flores, Agustin | es_ES |
dc.contributor.author | Quiles Cucarella, Eduardo | es_ES |
dc.contributor.author | García Moreno, Emilio | es_ES |
dc.contributor.author | Morant Anglada, Francisco José | es_ES |
dc.contributor.author | Correcher Salvador, Antonio | es_ES |
dc.date.accessioned | 2016-04-21T10:34:34Z | |
dc.date.available | 2016-04-21T10:34:34Z | |
dc.date.issued | 2014-08-25 | |
dc.identifier.issn | 1537-744X | |
dc.identifier.uri | http://hdl.handle.net/10251/62793 | |
dc.description.abstract | This work proposes a new method for fault diagnosis in electric power systems based on neural modules. With this method the diagnosis is performed by assigning a neural module for each type of component comprising the electric power system, whether it is a transmission line, bus or transformer.The neural modules for buses and transformers comprise two diagnostic levels which take into consideration the logic states of switches and relays, both internal and back-up, with the exception of the neural module for transmission lines which also has a third diagnostic level which takes into account the oscillograms of fault voltages and currents as well as the frequency spectrums of these oscillograms, in order to verify if the transmission line had in fact been subjected to a fault. One important advantage of the diagnostic system proposed is that its implementation does not require the use of a network configurator for the system; it does not depend on the size of the power network nor does it require retraining of the neural modules if the power network increases in size, making its application possible to only one component, a specific area, or the whole context of the power system. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Hindawi Publishing Corporation | es_ES |
dc.relation.ispartof | Scientific World Journal | es_ES |
dc.rights | Reconocimiento (by) | es_ES |
dc.subject | Mathematics | es_ES |
dc.subject | Computer Science | es_ES |
dc.subject | Medical Laboratory Technology | es_ES |
dc.subject | Physics | es_ES |
dc.subject.classification | INGENIERIA DE SISTEMAS Y AUTOMATICA | es_ES |
dc.title | A modular neural network scheme applied to fault diagnosis in electric power systems | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1155/2014/176463 | |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Ingeniería de Sistemas y Automática - Departament d'Enginyeria de Sistemes i Automàtica | es_ES |
dc.description.bibliographicCitation | Flores, A.; Quiles Cucarella, E.; García Moreno, E.; Morant Anglada, FJ.; Correcher Salvador, A. (2014). A modular neural network scheme applied to fault diagnosis in electric power systems. Scientific World Journal. 2014:1-13. doi:10.1155/2014/176463 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | http://dx.doi.org/10.1155/2014/176463 | es_ES |
dc.description.upvformatpinicio | 1 | es_ES |
dc.description.upvformatpfin | 13 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 2014 | es_ES |
dc.relation.senia | 269443 | es_ES |
dc.identifier.pmid | 25610897 | en_EN |
dc.identifier.pmcid | PMC4182697 | en_EN |
dc.description.references | Yongli, Z., Limin, H., & Jinling, L. (2006). Bayesian Networks-Based Approach for Power Systems Fault Diagnosis. IEEE Transactions on Power Delivery, 21(2), 634-639. doi:10.1109/tpwrd.2005.858774 | es_ES |
dc.description.references | Aggarwal, R., & Song, Y. (1997). Artificial neural networks in power systems. Part 1: General introduction to neural computing. Power Engineering Journal, 11(3), 129-134. doi:10.1049/pe:19970306 | es_ES |
dc.description.references | Faria, L., Silva, A., Vale, Z., & Marques, A. (2009). Training Control Centers’ Operators in Incident Diagnosis and Power Restoration Using Intelligent Tutoring Systems. IEEE Transactions on Learning Technologies, 2(2), 135-147. doi:10.1109/tlt.2009.16 | es_ES |
dc.description.references | Rigatos, G., Piccolo, A., & Siano, P. (2009). Neural network-based approach for early detection of cascading events in electric power systems. IET Generation, Transmission & Distribution, 3(7), 650-665. doi:10.1049/iet-gtd.2008.0475 | es_ES |
dc.description.references | Guo, W., Wen, F., Ledwich, G., Liao, Z., He, X., & Liang, J. (2010). An Analytic Model for Fault Diagnosis in Power Systems Considering Malfunctions of Protective Relays and Circuit Breakers. IEEE Transactions on Power Delivery, 25(3), 1393-1401. doi:10.1109/tpwrd.2010.2048344 | es_ES |
dc.description.references | Ravikumar, B., Thukaram, D., & Khincha, H. P. (2008). Application of support vector machines for fault diagnosis in power transmission system. IET Generation, Transmission & Distribution, 2(1), 119. doi:10.1049/iet-gtd:20070071 | es_ES |
dc.description.references | Aggarwal, R., & Yonghua Song. (1998). Artificial neural networks in power systems. Part 2: Types of artificial neural networks. Power Engineering Journal, 12(1), 41-47. doi:10.1049/pe:19980110 | es_ES |
dc.description.references | Salim, R. H., de Oliveira, K., Filomena, A. D., Resener, M., & Bretas, A. S. (2008). Hybrid Fault Diagnosis Scheme Implementation for Power Distribution Systems Automation. IEEE Transactions on Power Delivery, 23(4), 1846-1856. doi:10.1109/tpwrd.2008.917919 | es_ES |