- -

Optimized High-Order Splitting Methods For Some Classes Of Parabolic Equations

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Optimized High-Order Splitting Methods For Some Classes Of Parabolic Equations

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Blanes Zamora, Sergio es_ES
dc.contributor.author Casas Perez, Fernando es_ES
dc.contributor.author Chartier, P. es_ES
dc.contributor.author Murua, A. es_ES
dc.date.accessioned 2016-04-21T11:09:27Z
dc.date.available 2016-04-21T11:09:27Z
dc.date.issued 2013-07
dc.identifier.issn 0025-5718
dc.identifier.uri http://hdl.handle.net/10251/62800
dc.description.abstract We are concerned with the numerical solution obtained by splitting methods of certain parabolic partial differential equations. Splitting schemes of order higher than two with real coefficients necessarily involve negative coefficients. It has been demonstrated that this second-order barrier can be overcome by using splitting methods with complex-valued coefficients (with positive real parts). In this way, methods of orders 3 to 14 by using the Suzuki-Yoshida triple (and quadruple) jump composition procedure have been explicitly built. Here we reconsider this technique and show that it is inherently bounded to order 14 and clearly sub-optimal with respect to error constants. As an alternative, we solve directly the algebraic equations arising from the order conditions and construct methods of orders 6 and 8 that are the most accurate ones available at present time, even when low accuracies are desired. We also show that, in the general case, 14 is not an order barrier for splitting methods with complex coefficients with positive real part by building explicitly a method of order 16 as a composition of methods of order 8. es_ES
dc.language Inglés es_ES
dc.publisher American Mathematical Society es_ES
dc.relation.ispartof Mathematics of Computation es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Composition methods es_ES
dc.subject Splitting methods es_ES
dc.subject Complex coefficients es_ES
dc.subject Parabolic evolution equations es_ES
dc.subject.classification MATEMATICA APLICADA es_ES
dc.title Optimized High-Order Splitting Methods For Some Classes Of Parabolic Equations es_ES
dc.type Artículo es_ES
dc.rights.accessRights Cerrado es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario de Matemática Multidisciplinar - Institut Universitari de Matemàtica Multidisciplinària es_ES
dc.description.bibliographicCitation Blanes Zamora, S.; Casas Perez, F.; Chartier, P.; Murua, A. (2013). Optimized High-Order Splitting Methods For Some Classes Of Parabolic Equations. Mathematics of Computation. 82(283):1559-1576. http://hdl.handle.net/10251/62800 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://www.ams.org/journals/mcom/all_issues.html es_ES
dc.description.upvformatpinicio 1559 es_ES
dc.description.upvformatpfin 1576 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 82 es_ES
dc.description.issue 283 es_ES
dc.relation.senia 255336 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem