Mostrar el registro sencillo del ítem
dc.contributor.author | Blanes Zamora, Sergio | es_ES |
dc.contributor.author | Casas Perez, Fernando | es_ES |
dc.contributor.author | Chartier, P. | es_ES |
dc.contributor.author | Murua, A. | es_ES |
dc.date.accessioned | 2016-04-21T11:09:27Z | |
dc.date.available | 2016-04-21T11:09:27Z | |
dc.date.issued | 2013-07 | |
dc.identifier.issn | 0025-5718 | |
dc.identifier.uri | http://hdl.handle.net/10251/62800 | |
dc.description.abstract | We are concerned with the numerical solution obtained by splitting methods of certain parabolic partial differential equations. Splitting schemes of order higher than two with real coefficients necessarily involve negative coefficients. It has been demonstrated that this second-order barrier can be overcome by using splitting methods with complex-valued coefficients (with positive real parts). In this way, methods of orders 3 to 14 by using the Suzuki-Yoshida triple (and quadruple) jump composition procedure have been explicitly built. Here we reconsider this technique and show that it is inherently bounded to order 14 and clearly sub-optimal with respect to error constants. As an alternative, we solve directly the algebraic equations arising from the order conditions and construct methods of orders 6 and 8 that are the most accurate ones available at present time, even when low accuracies are desired. We also show that, in the general case, 14 is not an order barrier for splitting methods with complex coefficients with positive real part by building explicitly a method of order 16 as a composition of methods of order 8. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | American Mathematical Society | es_ES |
dc.relation.ispartof | Mathematics of Computation | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Composition methods | es_ES |
dc.subject | Splitting methods | es_ES |
dc.subject | Complex coefficients | es_ES |
dc.subject | Parabolic evolution equations | es_ES |
dc.subject.classification | MATEMATICA APLICADA | es_ES |
dc.title | Optimized High-Order Splitting Methods For Some Classes Of Parabolic Equations | es_ES |
dc.type | Artículo | es_ES |
dc.rights.accessRights | Cerrado | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Instituto Universitario de Matemática Multidisciplinar - Institut Universitari de Matemàtica Multidisciplinària | es_ES |
dc.description.bibliographicCitation | Blanes Zamora, S.; Casas Perez, F.; Chartier, P.; Murua, A. (2013). Optimized High-Order Splitting Methods For Some Classes Of Parabolic Equations. Mathematics of Computation. 82(283):1559-1576. http://hdl.handle.net/10251/62800 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | http://www.ams.org/journals/mcom/all_issues.html | es_ES |
dc.description.upvformatpinicio | 1559 | es_ES |
dc.description.upvformatpfin | 1576 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 82 | es_ES |
dc.description.issue | 283 | es_ES |
dc.relation.senia | 255336 | es_ES |