Mostrar el registro sencillo del ítem
dc.contributor.author | Blanes Zamora, Sergio | es_ES |
dc.contributor.author | Casas, Fernando | es_ES |
dc.contributor.author | Sanz-Serna, J. M. | es_ES |
dc.date.accessioned | 2016-04-21T12:02:00Z | |
dc.date.available | 2016-04-21T12:02:00Z | |
dc.date.issued | 2014 | |
dc.identifier.issn | 1064-8275 | |
dc.identifier.uri | http://hdl.handle.net/10251/62802 | |
dc.description.abstract | We construct numerical integrators for Hamiltonian problems that may advantageously replace the standard Verlet time-stepper within Hybrid Monte Carlo and related simulations. Past attempts have often aimed at boosting the order of accuracy of the integrator and/or reducing the size of its error constants; order and error constant are relevant concepts in the limit of vanishing step-length. We propose an alternative methodology based on the performance of the integrator when sampling from Gaussian distributions with not necessarily small step-lengths. We construct new splitting formulae that require two, three, or four force evaluations per time-step. Limited, proof-of-concept numerical experiments suggest that the new integrators may provide an improvement on the efficiency of the standard Verlet method, especially in problems with high dimensionality. | es_ES |
dc.description.sponsorship | This author's work was supported by project MTM2010-18246-C03-02 from Ministerio de Ciencia e Innovacion, Spain. | en_EN |
dc.language | Inglés | es_ES |
dc.publisher | Society for Industrial and Applied Mathematics | es_ES |
dc.relation.ispartof | SIAM Journal on Scientific Computing | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Hybrid Monte Carlo method | es_ES |
dc.subject | Markov Chain Monte Carlo | es_ES |
dc.subject | Acceptance probability | es_ES |
dc.subject | Hamiltonian dynamics | es_ES |
dc.subject | Reversibility | es_ES |
dc.subject | Volume preservation | es_ES |
dc.subject | Symplectic integrators | es_ES |
dc.subject | Verlet method | es_ES |
dc.subject | Split-step integrator | es_ES |
dc.subject | Stability | es_ES |
dc.subject | Error constant | es_ES |
dc.subject | Molecular dynamics | es_ES |
dc.subject.classification | MATEMATICA APLICADA | es_ES |
dc.title | Numerical Integrators for the Hybrid Monte Carlo Method | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1137/130932740 | |
dc.relation.projectID | info:eu-repo/grantAgreement/MICINN//MTM2010-18246-C03-02/ES/METODOS DE ESCISION Y COMPOSICION EN INTEGRACION NUMERICA GEOMETRICA/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/QNRF//NPRP 5-674-1-114/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MICINN//MTM2010-18246-C03-01/ES/RETOS EN INTEGRACION NUMERICA: GEOMETRIA, OSCILACIONES Y PROCESOS ESTOCASTICOS/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Instituto Universitario de Matemática Multidisciplinar - Institut Universitari de Matemàtica Multidisciplinària | es_ES |
dc.description.bibliographicCitation | Blanes Zamora, S.; Casas, F.; Sanz-Serna, JM. (2014). Numerical Integrators for the Hybrid Monte Carlo Method. SIAM Journal on Scientific Computing. 36(4):A1556-A1580. https://doi.org/10.1137/130932740 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | http://dx.doi.org/10.1137/130932740 | es_ES |
dc.description.upvformatpinicio | A1556 | es_ES |
dc.description.upvformatpfin | A1580 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 36 | es_ES |
dc.description.issue | 4 | es_ES |
dc.relation.senia | 280771 | es_ES |
dc.subject.asignatura | Métodos numéricos y aplicaciones médicas e industriales 35393 / D - Máster universitario en seguridad nuclear y protección radiológica 2307 | es_ES |
dc.contributor.funder | Qatar National Research Fund | es_ES |