- -

Evolutionary signals of selection on cognition from the great tit genome and methylome

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

Evolutionary signals of selection on cognition from the great tit genome and methylome

Show simple item record

Files in this item

dc.contributor.author Laine, Veronika N. es_ES
dc.contributor.author Gossmann, Toni I. es_ES
dc.contributor.author Schachtschneider, Kyle M. es_ES
dc.contributor.author Garroway, Colin J. es_ES
dc.contributor.author Madsen, Ole es_ES
dc.contributor.author Verhoeven, Koen J. F. es_ES
dc.contributor.author de Jager, Victor es_ES
dc.contributor.author Megens, Hendrik-Jan es_ES
dc.contributor.author Warren, Wesley C. es_ES
dc.contributor.author Minx, Patrick es_ES
dc.contributor.author Crooijmans, Richard P. M. A. es_ES
dc.contributor.author Corcoran, Padraic es_ES
dc.contributor.author Great Tit HapMap Consortium es_ES
dc.contributor.author Sheldon, Ben C. es_ES
dc.contributor.author Slate, Jon es_ES
dc.date.accessioned 2016-04-21T13:32:37Z
dc.date.available 2016-04-21T13:32:37Z
dc.date.issued 2016-01
dc.identifier.issn 2041-1723
dc.identifier.uri http://hdl.handle.net/10251/62805
dc.description.abstract [EN] For over 50 years, the great tit (Parus major) has been a model species for research in evolutionary, ecological and behavioural research; in particular, learning and cognition have been intensively studied. Here, to provide further insight into the molecular mechanisms behind these important traits, we de novo assemble a great tit reference genome and whole-genome re-sequence another 29 individuals from across Europe. We show an overrepresentation of genes related to neuronal functions, learning and cognition in regions under positive selection, as well as increased CpG methylation in these regions. In addition, great tit neuronal non-CpG methylation patterns are very similar to those observed in mammals, suggesting a universal role in neuronal epigenetic regulation which can affect learning-, memory-and experience-induced plasticity. The high-quality great tit genome assembly will play an instrumental role in furthering the integration of ecological, evolutionary, behavioural and genomic approaches in this model species. es_ES
dc.description.sponsorship We thank Eveline Verhulst for help with the methylome data, Christa Mateman for lab assistance, Martijn Derks for calculating the sliding windows, Tieshan Xu for the help with the Trinity assembly, Louise Dittmar for the help in dN/dS and diversity analysis, Christian Huber for help on the sweep analysis and Jun-Mo Kim who designed the SNP chip. K.M.S. was supported by a grant from the Cooperative Research Program for Agriculture Science & Technology Development (PJ009103) of the Rural Development Administration, Republic of Korea. T.I.G., P.C. and K.Z. were supported by a BBSRC grant (BB/K000209/1) and a NERC grant (NE/L005328/1) awarded to K.Z., C.J.G. was funded by Natural Environment Research Council (NERC) (NE/K01126X/1). K.J.F.V. was funded by the Dutch Organisation for Scientific Research, NWO VIDI grant (864.10.008). B.C.S. was funded by ERC Advanced Grant (250164) and by a Wolfson Merit Award from the Royal Society. J.S. was funded by a European Research Council (ERC) Starting grant, Avian EGG (202487) and a Natural Environment Research Council (NERC), The Great Tit HapMap Project (NE/J012599/1). M.E.V. was supported by the Netherlands Organisation for Scientific Research (NWO-VICI grant) and the European Research Council (ERC-2013-AdG 339092).
dc.language Inglés es_ES
dc.publisher Nature Publishing Group: Nature Communications es_ES
dc.relation RDA/PJ009103 es_ES
dc.relation NWO/VIDI/864.10.008 es_ES
dc.relation.ispartof Nature Communications es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Wild bird population es_ES
dc.subject Sequencing data es_ES
dc.subject Phenotypic plasticity es_ES
dc.subject Parus major es_ES
dc.subject Clutch size es_ES
dc.subject Alignment es_ES
dc.subject Generation es_ES
dc.subject History es_ES
dc.subject Memory es_ES
dc.subject Life es_ES
dc.subject.classification ZOOLOGIA es_ES
dc.title Evolutionary signals of selection on cognition from the great tit genome and methylome es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1038/ncomms10474
dc.relation.projectID info:eu-repo/grantAgreement/J4RCUK/NERC/NE/K01126X/1/GB/
dc.relation.projectID info:eu-repo/grantAgreement/J4RCUK/NERC/NE/J012599/1/GB/
dc.relation.projectID info:eu-repo/grantAgreement/J4RCUK/NERC/NE/L005328/1/GB/
dc.relation.projectID info:eu-repo/grantAgreement/J4NWO//2300162398/NL/
dc.relation.projectID info:eu-repo/grantAgreement/J4RCUK/BBSRC/BB/K000209/1/GB/
dc.relation.projectID info:eu-repo/grantAgreement/EC/FP7/250164/EU/Evolutionary Social Ecology in Wild Populations/
dc.relation.projectID info:eu-repo/grantAgreement/EC/FP7/202487/EU/Evolutionary genetics in a ‘classical’ avian study system by high throughput transcriptome sequencing and SNP genotyping/
dc.relation.projectID info:eu-repo/grantAgreement/EC/FP7/339092/EU/Evolutionary responses to a warming world: physiological genomics of seasonal timing/
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ciencia Animal - Departament de Ciència Animal es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto de Investigación para la Gestión Integral de Zonas Costeras - Institut d'Investigació per a la Gestió Integral de Zones Costaneres es_ES
dc.description.bibliographicCitation Laine, VN.; Gossmann, TI.; Schachtschneider, KM.; Garroway, CJ.; Madsen, O.; Verhoeven, KJF.; De Jager, V.... (2016). Evolutionary signals of selection on cognition from the great tit genome and methylome. Nature Communications. 7. https://doi.org/10.1038/ncomms10474 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/10.1038/ncomms10474 es_ES
dc.description.upvformatpinicio 10474 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 7 es_ES
dc.relation.senia 299869 es_ES
dc.identifier.pmid 26805030 en_EN
dc.identifier.pmcid PMC4737754
dc.contributor.funder European Research Council
dc.contributor.funder Biotechnology and Biological Sciences Research Council, Reino Unido
dc.contributor.funder Natural Environment Research Council, Reino Unido
dc.contributor.funder Netherlands Organization for Scientific Research
dc.contributor.funder International HapMap Project
dc.contributor.funder Rural Development Administration, Corea del Sur
dc.relation.references Rendell, L. et al. Cognitive culture: theoretical and empirical insights into social learning strategies. Trends Cogn. Sci. 15, 68–76 (2011) . es_ES
dc.relation.references Leadbeater, E. What evolves in the evolution of social learning? J. Zool. 295, 4–11 (2015) . es_ES
dc.relation.references Aplin, L. M. et al. Experimentally induced innovations lead to persistent culture via conformity in wild birds. Nature 518, 538–541 (2015) . es_ES
dc.relation.references Titulaer, M., van Oers, K. & Naguib, M. Personality affects learning performance in difficult tasks in a sex-dependent way. Anim. Behav. 83, 723–730 (2012) . es_ES
dc.relation.references Cole, E. F., Morand-Ferron, J., Hinks, A. E. & Quinn, J. L. Cognitive ability influences reproductive life history variation in the wild. Curr. Biol. 22, 1808–1812 (2012) . es_ES
dc.relation.references Overington, S. E., Morand-Ferron, J., Boogert, N. J. & Lefebvre, L. Technical innovations drive the relationship between innovativeness and residual brain size in birds. Anim. Behav. 78, 1001–1010 (2009) . es_ES
dc.relation.references Boyce, M. S. & Perrins, C. M. Optimizing great tit clutch size in a fluctuating environment. Ecology 68, 142–153 (1987) . es_ES
dc.relation.references Nussey, D. H., Postma, E., Gienapp, P. & Visser, M. E. Selection on heritable phenotypic plasticity in a wild bird population. Science 310, 304–306 (2005) . es_ES
dc.relation.references Charmantier, A. et al. Adaptive phenotypic plasticity in response to climate change in a wild bird population. Science 320, 800–803 (2008) . es_ES
dc.relation.references Pettifor, R. A., Perrins, C. M. & McCleery, R. H. Individual optimization of clutch size in great tits. Nature 336, 160–162 (1988) . es_ES
dc.relation.references Knowles, S. C. L., Nakagawa, S. & Sheldon, B. C. Elevated reproductive effort increases blood parasitaemia and decreases immune function in birds: a meta-regression approach. Funct. Ecol. 23, 405–415 (2009) . es_ES
dc.relation.references Bouwhuis, S., Sheldon, B. C., Verhulst, S. & Charmantier, A. Great tits growing old: selective disappearance and the partitioning of senescence to stages within the breeding cycle. Proc. R. Soc. B Biol. Sci. 276, 2769–2777 (2009) . es_ES
dc.relation.references Van Noordwijk, A. J. & Scharloo, W. Inbreeding in an island population of the great tit. Evolution 35, 674–688 (1981) . es_ES
dc.relation.references Greenwood, P. J., Harvey, P. H. & Perrins, C. M. Inbreeding and dispersal in the great tit. Nature 271, 52–54 (1978) . es_ES
dc.relation.references Richner, H. Host-parasite interactions and life-history evolution. Zoology 101, 333–344 (1998) . es_ES
dc.relation.references Krebs, J. R. Territory and breeding density in the great tit, Parus major L. Ecology 52, 2–22 (1971) . es_ES
dc.relation.references Mappes, J. & Alatalo, R. V. Effects of novelty and gregariousness in survival of aposematic prey. Behav. Ecol. 8, 174–177 (1997) . es_ES
dc.relation.references Van Oers, K. & Naguib, M. in Animal Personalities: Behavior, Physiology and Evolution eds Carere C., Maestripieri D. 520 Chicago Univ. Press (2013) . es_ES
dc.relation.references Van Oers, K. et al. Replicated high-density genetic maps of two great tit populations reveal fine-scale genomic departures from sex-equal recombination rates. Heredity 112, 307–316 (2014) . es_ES
dc.relation.references Warren, W. C. et al. The genome of a songbird. Nature 464, 757–762 (2010) . es_ES
dc.relation.references ICGSC. Sequence and comparative analysis of the chicken genome provide unique perspectives on vertebrate evolution. Nature 432, 695–716 (2004) . es_ES
dc.relation.references Kvist, L. et al. Evolution and genetic structure of the great tit (Parus major) complex. Proc. R. Soc. B Biol. Sci. 270, 1447–1454 (2003) . es_ES
dc.relation.references Li, H. & Durbin, R. Inference of human population history from individual whole-genome sequences. Nature 475, 493–496 (2011) . es_ES
dc.relation.references Clayton, D. F. The genomics of memory and learning in songbirds. Annu. Rev. Genomics Hum. Genet. 14, 45–65 (2013) . es_ES
dc.relation.references Hara, E., Kubikova, L., Hessler, N. A & Jarvis, E. D. Role of the midbrain dopaminergic system in modulation of vocal brain activation by social context. Eur. J. Neurosci. 25, 3406–3416 (2007) . es_ES
dc.relation.references Dragunow, M. A role for immediate-early transcription factors in learning and memory. Behav. Genet. 26, 293–299 (1996) . es_ES
dc.relation.references Bolhuis, J. J., Zijlstra, G. G. O., den Boer-Visser, A. M. & Van Der Zee, E. A. Localized neuronal activation in the zebra finch brain is related to the strength of song learning. Proc. Natl Acad. Sci. USA 97, 2282–2285 (2000) . es_ES
dc.relation.references Enard, W. et al. Molecular evolution of FOXP2, a gene involved in speech and language. Nature 418, 869–872 (2002) . es_ES
dc.relation.references Teramitsu, I. & White, S. A. FoxP2 regulation during undirected singing in adult songbirds. J. Neurosci. 26, 7390–7394 (2006) . es_ES
dc.relation.references Haesler, S. et al. Incomplete and inaccurate vocal imitation after knockdown of FoxP2 in songbird basal ganglia nucleus area X. PLoS Biol. 5, e321 (2007) . es_ES
dc.relation.references Goldberg, A. D., Allis, C. D. & Bernstein, E. Epigenetics: a landscape takes shape. Cell 128, 635–638 (2007) . es_ES
dc.relation.references Ball, M. P., Li, J. B., Gao, Y., Lee, J. & Leproust, E. Targeted and genome-scale methylomics reveals gene body signatures in human cell lines. Nat. Biotechnol. 27, 361–368 (2009) . es_ES
dc.relation.references Guo, J. U. et al. Distribution, recognition and regulation of non-CpG methylation in the adult mammalian brain. Nat. Neurosci. 17, 215–222 (2014) . es_ES
dc.relation.references Shirane, K. et al. Mouse oocyte methylomes at base resolution reveal genome-wide accumulation of non-CpG methylation and role of DNA methyltransferases. PLoS Genet. 9, e1003439 (2013) . es_ES
dc.relation.references Lister, R. et al. Human DNA methylomes at base resolution show widespread epigenomic differences. Nature 462, 315–322 (2009) . es_ES
dc.relation.references Nätt, D. et al. Heritable genome-wide variation of gene expression and promoter methylation between wild and domesticated chickens. BMC Genomics 13, 59 (2012) . es_ES
dc.relation.references Jarvis, E. D. et al. Whole-genome analyses resolve early branches in the tree of life of modern birds. Science 346, 1320–1331 (2014) . es_ES
dc.relation.references Zhang, G. et al. Comparative genomics reveals insights into avian genome evolution and adaptation. Science 346, 1311–1320 (2014) . es_ES
dc.relation.references Drent, P. J., van Oers, K. & van Noordwijk, A. J. Realized heritability of personalities in the great tit (Parus major). Proc. R. Soc. B Biol. Sci. 270, 45–51 (2003) . es_ES
dc.relation.references Gnerre, S. et al. High-quality draft assemblies of mammalian genomes from massively parallel sequence data. Proc. Natl. Acad. Sci. USA 108, 1513–1518 (2011) . es_ES
dc.relation.references Aronesty, E. Comparison of sequencing utility programs. Open Bioinforma. J. 7, 1–8 (2013) . es_ES
dc.relation.references Grabherr, M. G. et al. Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat. Biotechnol. 29, 644–652 (2011) . es_ES
dc.relation.references Kim, D. et al. TopHat2: accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions. Genome Biol. 14, R36 (2013) . es_ES
dc.relation.references Langmead, B., Trapnell, C., Pop, M. & Salzberg, S. L. Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol. 10, R25 (2009) . es_ES
dc.relation.references Haas, B. J. et al. De novo transcript sequence reconstruction from RNA-seq using the Trinity platform for reference generation and analysis. Nat. Protoc. 8, 1494–1512 (2013) . es_ES
dc.relation.references Cantarel, B. L. et al. MAKER: an easy-to-use annotation pipeline designed for emerging model organism genomes. Genome Res. 18, 188–196 (2008) . es_ES
dc.relation.references Ellegren, H. et al. The genomic landscape of species divergence in Ficedula flycatchers. Nature 491, 756–760 (2012) . es_ES
dc.relation.references Qu, Y. et al. Ground tit genome reveals avian adaptation to living at high altitudes in the Tibetan plateau. Nat. Commun. 4, 2071 (2013) . es_ES
dc.relation.references Stanke, M., Tzvetkova, A. & Morgenstern, B. AUGUSTUS at EGASP: using EST, protein and genomic alignments for improved gene prediction in the human genome. Genome Biol. 7, (Suppl 1): S11.1–8 (2006) . es_ES
dc.relation.references Li, H. & Durbin, R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25, 1754–1760 (2009) . es_ES
dc.relation.references DePristo, M. A. et al. A framework for variation discovery and genotyping using next-generation DNA sequencing data. Nat. Genet. 43, 491–498 (2011) . es_ES
dc.relation.references Korneliussen, T., Albrechtsen, A. & Nielsen, R. ANGSD: Analysis of Next Generation Sequencing Data. BMC Bioinformatics 15, 356 (2014) . es_ES
dc.relation.references Han, E., Sinsheimer, J. S. & Novembre, J. Characterizing bias in population genetic inferences from low-coverage sequencing data. Mol. Biol. Evol. 31, 723–735 (2014) . es_ES
dc.relation.references Rimmer, A. et al. Integrating mapping-, assembly- and haplotype-based approaches for calling variants in clinical sequencing applications. Nat. Genet. 46, 912–918 (2014) . es_ES
dc.relation.references Nielsen, R. et al. Genomic scans for selective sweeps using SNP data. Genome Res. 15, 1566–1575 (2005) . es_ES
dc.relation.references Kim, S.Y. et al. Estimation of allele frequency and association mapping using next-generation sequencing data. BMC Bioinformatics 35, 231 (2011) . es_ES
dc.relation.references Darling, A. E., Mau, B. & Perna, N. T. progressiveMauve: multiple genome alignment with gene gain, loss and rearrangement. PLoS ONE 5, e11147 (2010) . es_ES
dc.relation.references Edgar, R. C. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 32, 1792–1797 (2004) . es_ES
dc.relation.references Wu, M., Chatterji, S. & Eisen, J. A. Accounting for alignment uncertainty in phylogenomics. PLoS ONE 7, e30288 (2012) . es_ES
dc.relation.references Suyama, M., Torrents, D. & Bork, P. PAL2NAL: Robust conversion of protein sequence alignments into the corresponding codon alignments. Nucleic Acids Res. 34, W609–W612 (2006) . es_ES
dc.relation.references Yang, Z. PAML 4: phylogenetic analysis by maximum likelihood. Mol. Biol. Evol. 24, 1586–1591 (2007) . es_ES
dc.relation.references Bindea, G. et al. ClueGO: A Cytoscape plug-in to decipher functionally grouped gene ontology and pathway annotation networks. Bioinformatics 25, 1091–1093 (2009) . es_ES
dc.relation.references Guo, W. et al. BS-Seeker2: a versatile aligning pipeline for bisulfite sequencing data. BMC Genomics 14, 774 (2013) . es_ES


This item appears in the following Collection(s)

Show simple item record