- -

Some topological cardinal inequalities for spaces Cp(X)

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

Some topological cardinal inequalities for spaces Cp(X)

Show full item record

Ferrando, JC.; Kakol, J.; López Pellicer, M.; Muñoz, M. (2013). Some topological cardinal inequalities for spaces Cp(X). Topology and its Applications. 160(10):1102-1107. https://doi.org/10.1016/j.topol.2013.04.024

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/62807

Files in this item

Item Metadata

Title: Some topological cardinal inequalities for spaces Cp(X)
Author: Ferrando, J. C. Kakol, Jerzy López Pellicer, Manuel Muñoz, M.
UPV Unit: Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada
Universitat Politècnica de València. Instituto Universitario de Matemática Pura y Aplicada - Institut Universitari de Matemàtica Pura i Aplicada
Issued date:
Abstract:
Using the index of Nagami we get new topological cardinal inequalities for spaces Cp(X). A particular case of Theorem 1 states that if L ⊆ Cp(X) is a Lindelöf Σ-space and the Nagami index Nag(X) of X is less or equal ...[+]
Subjects: Lindelöf Σ-spaces , Density , Locally convex spaces , Hewitt-Nachbin number
Copyrigths: Reserva de todos los derechos
Source:
Topology and its Applications. (issn: 0166-8641 )
DOI: 10.1016/j.topol.2013.04.024
Publisher:
Elsevier
Publisher version: http://dx.doi.org/10.1016/j.topol.2013.04.024
Project ID:
info:eu-repo/grantAgreement/NCN//N N201 605340/
info:eu-repo/grantAgreement/MICINN//MTM2010-12374-E/ES/ESTRATEGIAS PARA EL PROGRESO MATEMATICO EN ESPAÑA/
Thanks:
The research was supported for the second named author by National Center of Science, Poland, Grant No. N N201 605340 and for the third author by the project MTM2010-12374-E (complementary action) of the Spanish Ministry ...[+]
Type: Artículo

recommendations

 

This item appears in the following Collection(s)

Show full item record