Mostrar el registro sencillo del ítem
dc.contributor.author | Albanese, Angela A. | es_ES |
dc.contributor.author | Bonet Solves, José Antonio | es_ES |
dc.contributor.author | Ricker, Werner Joseph | es_ES |
dc.date.accessioned | 2016-04-22T09:30:33Z | |
dc.date.available | 2016-04-22T09:30:33Z | |
dc.date.issued | 2014 | |
dc.identifier.issn | 0208-6573 | |
dc.identifier.uri | http://hdl.handle.net/10251/62842 | |
dc.description.abstract | [EN] Let (T(t))t>0 be a strongly continuous C0-semigroup of bounded linear operators on a Banach space X such that limt→∞ kT(t)/tk = 0. Characterizations of when (T(t))t>0 is uniformly mean ergodic, i.e., of when its Cesàro means r−1 R r 0 T(s) ds converge in operator norm as r → ∞, are known. For instance, this is so if and only if the infinitesimal generator A has closed range in X if and only if limλ↓0+ λR(λ, A) exists in the operator norm topology (where R(λ, A) is the resolvent operator of A at λ). These characterizations, and others, are shown to remain valid in the class of quojection Fréchet spaces, which includes all Banach spaces, countable products of Banach spaces, and many more. It is shown that the extension fails to hold for all Fréchet spaces. Applications of the results to concrete examples of C0-semigroups in particular Fréchet function and sequence spaces are presented | es_ES |
dc.description.sponsorship | The second author was partially supported by MEC and FEDER Project MTM 2010-15200, GV Project PrometeoII/2013/013 and the net MTM 2007–30904–E (Spain). | |
dc.language | Inglés | es_ES |
dc.publisher | Adam Miekiewicz University. Faculty of Mathematics and Computer Science | es_ES |
dc.relation.ispartof | Functiones et Approximatio, Commentarii mathematici | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Uniform mean ergodicity | es_ES |
dc.subject | C0-semigroups | es_ES |
dc.subject | Quojections | es_ES |
dc.subject | Frechet spaces | es_ES |
dc.subject | Quojection and prequojection Fréchet spaces | es_ES |
dc.subject.classification | MATEMATICA APLICADA | es_ES |
dc.title | Uniform mean ergodicity of C0-semigroups in a class of Fréchet spaces | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.7169/fcam/2014.50.2.8 | |
dc.relation.projectID | info:eu-repo/grantAgreement/MICINN//MTM2010-15200/ES/METODOS DE ANALISIS FUNCIONAL PARA EL ANALISIS MATEMATICO/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/GVA//PROMETEOII%2F2013%2F013/ES/Análisis funcional, teoría de operadores y sus aplicaciones (AFUNTOP)/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MEC//MTM2007-30904-E/ES/VARIABLE COMPLEJA, ESPACIOS DE FUNCIONES Y OPERADORES ENTRE ELLOS/ | es_ES |
dc.rights.accessRights | Cerrado | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada | es_ES |
dc.description.bibliographicCitation | Albanese, AA.; Bonet Solves, JA.; Ricker, WJ. (2014). Uniform mean ergodicity of C0-semigroups in a class of Fréchet spaces. Functiones et Approximatio, Commentarii mathematici. 50(2):307-349. https://doi.org/10.7169/fcam/2014.50.2.8 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | http://projecteuclid.org/euclid.facm/1403811838 | es_ES |
dc.description.upvformatpinicio | 307 | es_ES |
dc.description.upvformatpfin | 349 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 50 | es_ES |
dc.description.issue | 2 | es_ES |
dc.relation.senia | 279537 | es_ES |
dc.contributor.funder | Ministerio de Educación y Ciencia | |
dc.contributor.funder | Generalitat Valenciana | |
dc.contributor.funder | Ministerio de Ciencia e Innovación | es_ES |