- -

Magnetic resonance spectroscopy and imaging on fresh human brain tumor biopsies at microscopic resolution

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Magnetic resonance spectroscopy and imaging on fresh human brain tumor biopsies at microscopic resolution

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Martínez-Bisbal, M.Carmen es_ES
dc.contributor.author Martínez-Granados, Beatriz es_ES
dc.contributor.author Rovira, Vicente es_ES
dc.contributor.author Celda, Bernardo es_ES
dc.contributor.author Esteve, Vicent es_ES
dc.date.accessioned 2016-04-25T08:24:10Z
dc.date.available 2016-04-25T08:24:10Z
dc.date.issued 2015-09
dc.identifier.issn 1618-2642
dc.identifier.uri http://hdl.handle.net/10251/62871
dc.description.abstract [EN] The metabolic compn. and concn. knowledge provided by magnetic resonance spectroscopy (MRS) liq. and high-resoln. magic angle spinning spectroscopy (HR-MAS) has a relevant impact in clin. practice during magnetic resonance imaging (MRI) monitoring of human tumors. In addn., the combination of morphol. and chem. information by MRI and MRS has been particularly useful for diagnosis and prognosis of tumor evolution. MRI spatial resoln. reachable in human beings is limited for safety reasons and the demanding necessary conditions are only applicable on exptl. model animals. Nevertheless, MRS and MRI can be performed on human biopsies at high spatial resoln., enough to allow a direct correlation between the chem. information and the histol. features obsd. in such biopsies. Although HR-MAS is nowadays a well-established technique for spectroscopic anal. of tumor biopsies, with this approach just a mean metabolic profile of the whole sample can be obtained and thus the high histol. heterogeneity of some important tumors is mostly neglected. The value of metabolic HR-MAS data strongly depends on a wide statistical anal. and usually the microanatomical rationale for the correlation between histol. and spectroscopy is lost. We present here a different approach for the combined use of MRI and MRS on fresh human brain tumor biopsies with native contrast. This approach has been designed to achieve high spatial (18 × 18 × 50 m) and spectral (0.031 L) resoln. in order to obtain as much spatially detailed morphol. and metabolical information as possible without any previous treatment that can alter the sample. The preservation of native tissue conditions can provide information that can be translated to in vivo studies and addnl. opens the possibility of performing other techniques to obtain complementary information from the same sample. es_ES
dc.description.sponsorship The authors acknowledge the SCSIE-University of Valencia Microscopy Service for the histological preparations. They also acknowledge financial support from the Spanish Government project SAF2007-6547, the Generalitat Valenciana project GVACOMP2009-303, and the E.U.s VI Framework Program via the project "Web accessible MR decision support system for brain tumor diagnosis and prognosis, incorporating in vivo and ex vivo genomic and metabolomic data" (FP6-2002-LSH 503094). en_EN
dc.language Inglés es_ES
dc.publisher Springer Verlag (Germany) es_ES
dc.relation.ispartof Analytical and Bioanalytical Chemistry es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Magnetic resonance imaging es_ES
dc.subject Magnetic resonance spectroscopy es_ES
dc.subject Magnetic resonance microscopy es_ES
dc.subject High-resolution magic angle spinning spectroscopy (HR-MAS) es_ES
dc.subject Biopsy es_ES
dc.subject Human brain tumor es_ES
dc.subject Fresh tissue es_ES
dc.subject Glioblastoma es_ES
dc.title Magnetic resonance spectroscopy and imaging on fresh human brain tumor biopsies at microscopic resolution es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1007/s00216-015-8847-3
dc.relation.projectID info:eu-repo/grantAgreement/MEC//SAF2007-65473/ES/BIOMARCADORES MEDIANTE ANALISIS COMBINADO TRANSCRIPTOMICA, PROTEOMICA Y METABOLOMICA. APLICACION AL DIAGNOSTICO, PRONOSTICO Y SELECCION DE TRATAMIENTO EN NEOPLASIAS DE CEREBRO Y MAMA/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/EC/FP6/503094/EU/WEB ACCESSIBLE MR DECISION SUPPORT SYSTEM FOR BRAIN TUMOUR DIAGNOSIS AND PROGNOSIS, INCORPORATING IN VIVO AND EX VIVO GENOMIC AND METABOLIMIC DATA/ETUMOUR/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//ACOMP%2F2009%2F303/ es_ES
dc.rights.accessRights Abierto es_ES
dc.description.bibliographicCitation Martínez-Bisbal, M.; Martínez-Granados, B.; Rovira, V.; Celda, B.; Esteve, V. (2015). Magnetic resonance spectroscopy and imaging on fresh human brain tumor biopsies at microscopic resolution. Analytical and Bioanalytical Chemistry. 407(22):6771-6780. https://doi.org/10.1007/s00216-015-8847-3 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/10.1007/s00216-015-8847-3 es_ES
dc.description.upvformatpinicio 6771 es_ES
dc.description.upvformatpfin 6780 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 407 es_ES
dc.description.issue 22 es_ES
dc.relation.senia 300087 es_ES
dc.identifier.pmid 26123440
dc.contributor.funder Ministerio de Educación y Ciencia
dc.contributor.funder Generalitat Valenciana
dc.contributor.funder European Commission
dc.description.references Stadlbauer A, Gruber S, Nimsky C, Fahlbusch R, Hammen T, Buslei R, Tomandl B, Moser E, Ganslandt O (2006) Preoperative grading of gliomas by using metabolite quantification with high-spatial-resolution proton MR spectroscopic imaging. Radiology 238:958 es_ES
dc.description.references Howe FA, Barton SJ, Cudlip SA, Stubbs M, Saunders DE, Murphy M, Wilkins P, Opstad KS, Doyle VL, McLean MA, Bell BA, Griffiths JR (2003) Metabolic profiles of human brain tumors using quantitative in vivo 1H magnetic resonance spectroscopy. Magn Reson Med 49:223 es_ES
dc.description.references Castillo M, Kwock L (1999) Clinical applications of proton magnetic resonance spectroscopy in the evaluation of common intracranial tumors. Top Magn Reson Imaging 10:104 es_ES
dc.description.references Howe FA, Opstad KS (2003) 1H MR spectroscopy of brain tumours and masses. NMR Biomed 16:123 es_ES
dc.description.references Martinez-Bisbal MC, Celda B (2009) Proton magnetic resonance spectroscopy imaging in the study of human brain cancer. Q J Nucl Med Mol Imaging 53:618 es_ES
dc.description.references Sibtain NA, Howe FA, Saunders DE (2007) The clinical value of proton magnetic resonance spectroscopy in adult brain tumours. Clin Radiol 62:109 es_ES
dc.description.references Tong Z, Yamaki T, Harada K, Houkin K (2004) In vivo quantification of the metabolites in normal brain and brain tumors by proton MR spectroscopy using water as an internal standard. Magn Reson Imaging 22:1017 es_ES
dc.description.references Hourani R, Brant LJ, Rizk T, Weingart JD, Barker PB, Horska A (2008) Can proton MR spectroscopic and perfusion imaging differentiate between neoplastic and nonneoplastic brain lesions in adults? AJNR Am J Neuroradiol 29:366 es_ES
dc.description.references Hourani R, Horska A, Albayram S, Brant LJ, Melhem E, Cohen KJ, Burger PC, Weingart JD, Carson B, Wharam MD, Barker PB (2006) Proton magnetic resonance spectroscopic imaging to differentiate between nonneoplastic lesions and brain tumors in children. J Magn Reson Imaging 23:99 es_ES
dc.description.references Lai PH, Weng HH, Chen CY, Hsu SS, Ding S, Ko CW, Fu JH, Liang HL, Chen KH (2008) In vivo differentiation of aerobic brain abscesses and necrotic glioblastomas multiforme using proton MR spectroscopic imaging. AJNR Am J Neuroradiol 29:1511 es_ES
dc.description.references Vuori K, Kankaanranta L, Hakkinen AM, Gaily E, Valanne L, Granstrom ML, Joensuu H, Blomstedt G, Paetau A, Lundbom N (2004) Low-grade gliomas and focal cortical developmental malformations: differentiation with proton MR spectroscopy. Radiology 230:703 es_ES
dc.description.references Di Costanzo A, Scarabino T, Trojsi F, Popolizio T, Catapano D, Giannatempo GM, Bonavita S, Portaluri M, Tosetti M, d’Angelo VA, Salvolini U, Tedeschi G (2008) Proton MR spectroscopy of cerebral gliomas at 3 T: spatial heterogeneity, and tumour grade and extent. Eur Radiol 18:1727 es_ES
dc.description.references Law M, Yang S, Wang H, Babb JS, Johnson G, Cha S, Knopp EA, Zagzag D (2003) Glioma grading: sensitivity, specificity, and predictive values of perfusion MR imaging and proton MR spectroscopic imaging compared with conventional MR imaging. AJNR Am J Neuroradiol 24:1989 es_ES
dc.description.references Catalaa I, Henry R, Dillon WP, Graves EE, McKnight TR, Lu Y, Vigneron DB, Nelson SJ (2006) Perfusion, diffusion and spectroscopy values in newly diagnosed cerebral gliomas. NMR Biomed 19:463 es_ES
dc.description.references Devos A, Lukas L, Suykens JA, Vanhamme L, Tate AR, Howe FA, Majos C, Moreno-Torres A, van der Graaf M, Arus C, Van Huffel S (2004) Classification of brain tumours using short echo time 1H MR spectra. J Magn Reson 170:164 es_ES
dc.description.references Burtscher IM, Skagerberg G, Geijer B, Englund E, Stahlberg F, Holtas S (2000) Proton MR spectroscopy and preoperative diagnostic accuracy: an evaluation of intracranial mass lesions characterized by stereotactic biopsy findings. AJNR Am J Neuroradiol 21:84 es_ES
dc.description.references Ishimaru H, Morikawa M, Iwanaga S, Kaminogo M, Ochi M, Hayashi K (2001) Differentiation between high-grade glioma and metastatic brain tumor using singlevoxel proton MR spectroscopy. Eur Radiol 11:1784 es_ES
dc.description.references Sjobakk TE, Johansen R, Bathen TF, Sonnewald U, Kvistad KA, Lundgren S, Gribbestad IS (2007) Metabolic profiling of human brain metastases using in vivo proton MR spectroscopy at 3T. BMC Cancer 7:141 es_ES
dc.description.references Stadlbauer A, Nimsky C, Buslei R, Pinker K, Gruber S, Hammen T, Buchfelder M, Ganslandt O (2007) Proton magnetic resonance spectroscopic imaging in the border zone of gliomas: correlation of metabolic and histological changes at low tumor infiltration—initial results. Investig Radiol 42:218 es_ES
dc.description.references Law M, Cha S, Knopp EA, Johnson G, Arnett J, Litt AW (2002) High-grade gliomas and solitary metastases: differentiation by using perfusion and proton spectroscopic MR imaging. Radiology 222:715 es_ES
dc.description.references Schlemmer HP, Bachert P, Herfarth KK, Zuna I, Debus J, van Kaick G (2001) Proton MR spectroscopic evaluation of suspicious brain lesions after stereotactic radiotherapy. AJNR Am J Neuroradiol 22:1316 es_ES
dc.description.references Weybright P, Sundgren PC, Maly P, Hassan DG, Nan B, Rohrer S, Junck L (2005) Differentiation between brain tumor recurrence and radiation injury using MR spectroscopy. AJR Am J Roentgenol 185:1471 es_ES
dc.description.references Stadlbauer A, Moser E, Gruber S, Buslei R, Nimsky C, Fahlbusch R, Ganslandt O (2004) Improved delineation of brain tumors: an automated method for segmentation based on pathologic changes of 1H-MRSI metabolites in gliomas. Neuroimage 23:454 es_ES
dc.description.references Dowling C, Bollen AW, Noworolski SM, McDermott MW, Barbaro NM, Day MR, Henry RG, Chang SM, Dillon WP, Nelson SJ, Vigneron DB (2001) Preoperative proton MR spectroscopic imaging of brain tumors: correlation with histopathologic analysis of resection specimens. AJNR Am J Neuroradiol 22:604 es_ES
dc.description.references Benveniste H, Blackband S (2002) MR microscopy and high resolution small animal MRI: applications in neuroscience research. Prog Neurobiol 67:393 es_ES
dc.description.references Benveniste H, Blackband SJ (2006) Translational neuroscience and magneticresonancemicroscopy. Lancet Neurol 5:536 es_ES
dc.description.references Thelwall PE, Shepherd TM, Stanisz GJ, Blackband SJ (2006) Effects of temperature and aldehyde fixation on tissue water diffusion properties, studied in an erythrocyte ghost tissue model. Magn Reson Med 56:282 es_ES
dc.description.references Fatterpekar GM, Naidich TP, Delman BN, Aguinaldo JG, Gultekin SH, Sherwood CC, Hof PR, Drayer BP, Fayad ZA (2002) Cytoarchitecture of the human cerebral cortex: MR microscopy of excised specimens at 9.4 Tesla. AJNR Am J Neuroradiol 23:1313 es_ES
dc.description.references Yushkevich PA, Avants BB, Pluta J, Das S, Minkoff D, Mechanic-Hamilton D, Glynn S, Pickup S, Liu W, Gee JC, Grossman M, Detre JA (2009) A high-resolution computational atlas of the human hippocampus from postmortem magnetic resonance imaging at 9.4 T. Neuroimage 44:385 es_ES
dc.description.references Blackwell ML, Farrar CT, Fischl B, Rosen BR (2009) Target-specific contrast agents for magnetic resonance microscopy. Neuroimage 46:382 es_ES
dc.description.references Shenkar R, Venkatasubramanian PN, Zhao JC, Batjer HH, Wyrwicz AM, Awad IA (2008) Advanced magnetic resonance imaging of cerebral cavernous malformations: part I. High-field imaging of excised human lesions. Neurosurgery 63:782 es_ES
dc.description.references Gonzalez-Segura A, Morales JM, Gonzalez-Darder JM, Cardona-Marsal R, Lopez-Gines C, Cerda-Nicolas M, Monleon D (2011) Magnetic resonance microscopy at 14 Tesla and correlative histopathology of human brain tumor tissue. PLoS One 6, e27442 es_ES
dc.description.references Shepherd TM, Flint JJ, Thelwall PE, Stanisz GJ, Mareci TH, Yachnis AT, Blackband SJ (2009) Postmortem interval alters the water relaxation and diffusion properties of rat nervous tissue—implications for MRI studies of human autopsy samples. Neuroimage 44:820 es_ES
dc.description.references Brazilian Aging Brain Study Group, Grinberg LT, Amaro E Jr, Teipel S, dos Santos DD, Pasqualucci CA, Leite RE, Camargo CR, Goncalves JA, Sanches AG, Santana M, Ferretti RE, Jacob-Filho W, Nitrini R, Heinsen H (2008) Assessment of factors that confound MRI and neuropathological correlation of human postmortem brain tissue. Cell Tissue Bank 9:195 es_ES
dc.description.references Tkac I, Starcuk Z, Choi IY, Gruetter R (1999) In vivo 1H NMR spectroscopy of rat brain at 1 ms echo time. Magn Reson Med 41:649 es_ES
dc.description.references Pfeuffer J, Tkac I, Provencher SW, Gruetter R (1999) Toward an in vivo neurochemical profile: quantification of 18 metabolites in short-echo-time (1) H NMR spectra of the rat brain. J Magn Reson 141:104 es_ES
dc.description.references Pfeuffer J, Tkac I, Choi IY, Merkle H, Ugurbil K, Garwood M, Gruetter R (1999) Localized in vivo 1H NMR detection of neurotransmitter labeling in rat brain during infusion of [1-13C] D-glucose. Magn Reson Med 41:1077 es_ES
dc.description.references Gruetter R (1993) Automatic, localized in vivo adjustment of all first- and secondorder shim coils. Magn Reson Med 29:804 es_ES
dc.description.references Zoula S, Herigault G, Ziegler A, Farion R, Decorps M, Remy C (2003) Correlation between the occurrence of 1H-MRS lipid signal, necrosis and lipid droplets during C6 rat glioma development. NMR Biomed 16:199 es_ES
dc.description.references Russell D, Rubinstein LJ (1998) Russel and Rubinstein’s Pathology of Tumors of the Nervous System. Arnold, London es_ES
dc.description.references Levin VA, Leibel SA, Gutin PH (1997) In: De Vita VTj, Hellman S, Rosenberg SA (eds) Cancer principles and practice of oncology, 5th edn. Lippincott-Raven, Philadelphia es_ES
dc.description.references Cha S (2006) Update on brain tumor imaging: from anatomy to physiology. AJNR Am J Neuroradiol 27:475 es_ES
dc.description.references Steinberg JD, Velan SS (2012) Measuring glucose concentrations in the rat brain using echo-time-averaged point resolved spectroscopy at 7 Tesla. Magnetic Resonance in Medicine:n/a es_ES
dc.description.references Simoes RV, Garcia-Martin ML, Cerdan S, Arus C (2008) Perturbation of mouse glioma MRS pattern by induced acute hyperglycemia. NMR Biomed 21:251 es_ES
dc.description.references Thorsen F, Jirak D, Wang J, Sykova E, Bjerkvig R, Enger PO, van der Kogel A, Hajek M (2008) Two distinct tumor phenotypes isolated from glioblastomas show different MRS characteristics. NMR Biomed 21:830 es_ES
dc.description.references Liimatainen T, Hakumaki J, Tkac I, Grohn O (2006) Ultra-short echo time spectroscopic imaging in rats: implications for monitoring lipids in glioma gene therapy. NMR Biomed 19:554 es_ES
dc.description.references Liimatainen TJ, Erkkila AT, Valonen P, Vidgren H, Lakso M, Wong G, Grohn OH, Yla-Herttuala S, Hakumaki JM (2008) 1H MR spectroscopic imaging of phospholipase-mediated membrane lipid release in apoptotic rat glioma in vivo. Magn Reson Med 59:1232 es_ES
dc.description.references Liimatainen T, Hakumaki JM, Kauppinen RA, Ala-Korpela M (2009) Monitoring of gliomas in vivo by diffusion MRI and (1) H MRS during gene therapy-induced apoptosis: interrelationships between water diffusion and mobile lipids. NMR Biomed 22:272 es_ES
dc.description.references Griffin JL, Lehtimaki KK, Valonen PK, Grohn OH, Kettunen MI, Yla-Herttuala S, Pitkanen A, Nicholson JK, Kauppinen RA (2003) Assignment of 1H nuclear magnetic resonance visible polyunsaturated fatty acids in BT4C gliomas undergoing ganciclovir-thymidine kinase gene therapy-induced programmed cell death. Cancer Res 63:3195 es_ES
dc.description.references Provent P, Benito M, Hiba B, Farion R, Lopez-Larrubia P, Ballesteros P, Remy C, Segebarth C, Cerdan S, Coles JA, Garcia-Martin ML (2007) Serial in vivo spectroscopic nuclear magnetic resonance imaging of lactate and extracellular pH in rat gliomas shows redistribution of protons away from sites of glycolysis. Cancer Res 67:7638 es_ES
dc.description.references Doblas S, He T, Saunders D, Hoyle J, Smith N, Pye Q, Lerner M, Jensen RL, Towner RA (2012) In vivo characterization of several rodent glioma models by 1H MRS. NMR Biomed 25:685 es_ES
dc.description.references Ziegler A, von Kienlin M, Decorps M, Remy C (2001) High glycolytic activity in rat glioma demonstrated in vivo by correlation peak 1H magnetic resonance imaging. Cancer Res 61:5595 es_ES
dc.description.references Garcia-Martin ML, Herigault G, Remy C, Farion R, Ballesteros P, Coles JA, Cerdan S, Ziegler A (2001) Mapping extracellular pH in rat brain gliomas in vivo by 1H magnetic resonance spectroscopic imaging: comparison with maps of metabolites. Cancer Res 61:6524 es_ES
dc.description.references Hakumaki JM, Poptani H, Sandmair AM, Yla-Herttuala S, Kauppinen RA (1999) 1H MRS detects polyunsaturated fatty acid accumulation during gene therapy of glioma: implications for the in vivo detection of apoptosis. Nat Med 5:1323 es_ES
dc.description.references Martinez-Bisbal MC, Esteve V, Martinez-Granados B, Celda B (2011) Magnetic resonance microscopy contribution to interpret high-resolution magic angle spinning metabolomic data of human tumor tissue. J Biomed Biotechnol 2011:763684 es_ES
dc.description.references Esteve V, Celda B, Martinez-Bisbal MC (2012) Use of (1) H and (31)P HRMAS to evaluate the relationship between quantitative alterations in metabolite concentrations and tissue features in human brain tumour biopsies. Anal Bioanal Chem es_ES
dc.description.references Martinez-Bisbal MC, Marti-Bonmati L, Piquer J, Revert A, Ferrer P, Llacer JL, Piotto M, Assemat O, Celda B (2004) 1H and 13C HR-MAS spectroscopy of intact biopsy samples ex vivo and in vivo 1H MRS study of human high grade gliomas. NMR Biomed 17:191 es_ES
dc.description.references Cheng LL, Ma MJ, Becerra L, Ptak T, Tracey I, Lackner A, Gonzalez RG (1997) Quantitative neuropathology by high resolution magic angle spinning proton magnetic resonance spectroscopy. Proc Natl Acad Sci U S A 94:6408 es_ES
dc.description.references Cheng LL, Anthony DC, Comite AR, Black PM, Tzika AA, Gonzalez RG (2000) Quantification of microheterogeneity in glioblastoma multiforme with ex vivo highresolution magic-angle spinning (HRMAS) proton magnetic resonance spectroscopy. Neuro-Oncology 2:87 es_ES
dc.description.references Sitter B, Bathen TF, Tessem M, Gribbestad IS (2009) High-resolution magic angle spinning (HR MAS) MR spectroscopy in metabolic characterization of human cancer. Prog Nucl Magn Reson Spectrosc 54:239 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem