- -

Vigor for in vitro culture traits in S. melongena x S. aethiopicum Hybrids with potential as Rootstocks for Eggplant

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Vigor for in vitro culture traits in S. melongena x S. aethiopicum Hybrids with potential as Rootstocks for Eggplant

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Calvo Asensio, Irene es_ES
dc.contributor.author Prohens Tomás, Jaime es_ES
dc.contributor.author Gisbert Domenech, María Carmen es_ES
dc.date.accessioned 2016-04-26T08:31:34Z
dc.date.available 2016-04-26T08:31:34Z
dc.date.issued 2014
dc.identifier.issn 1537-744X
dc.identifier.uri http://hdl.handle.net/10251/62927
dc.description.abstract Hybrids of Solanum melongena and S. aethiopicum are of interest as rootstocks of eggplant, as they are highly vigorous and can incorporate resistance to several diseases. However, hybridization between both species is difficult. Therefore, protocols for in vitro culture are of great interest for their micropropagation and biotechnological breeding. We assessed the organogenesis response from leaf explants in four interspecific hybrids and in their parents testing two organogenic media: SIM-A, containing 6-benzylaminopurine and kinetin, and SIM-B, which contains thidiazuron. A higher regeneration capacity in the hybrids compared to their parents was observed. Whereas in interspecific hybrids and in one accession of S. melongena similar regeneration rates were observed for SIM-A and SIM-B, higher regeneration was found in the rest of genotypes when thidiazuron was used. Rooting ability in the interspecific hybrids was lower in in vitro micropropagated plants (35-60%) than in plants regenerated from explants (100%). The addition of indolbutiric acid (1 mg L-1) induced roots in nonrooted genotypes. In summary, we have adjusted in vitro culture conditions for regenerating and rooting S. melongena x S. aethiopicum hybrids. We have also demonstrated that these hybrids are heterotic for regeneration, which may be of interest for basic science studies. es_ES
dc.description.sponsorship This work has been partially funded by Universitat Politecnica de Valencia (Grant PAID05-10) and by Ministerio de Economia y Competitividad (Grant AGL2012-34213). Authors thank Dr. John R. Stommel (ARS-USDA, Beltsville, MD, USA) for providing the seeds of the S. melongena M1 and M2 and S. aethiopicum A1 and A2 accessions and the interspecific hybrids used in this work. en_EN
dc.language Inglés es_ES
dc.publisher Hindawi Publishing Corporation es_ES
dc.relation.ispartof Scientific World Journal es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject.classification GENETICA es_ES
dc.title Vigor for in vitro culture traits in S. melongena x S. aethiopicum Hybrids with potential as Rootstocks for Eggplant es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1155/2014/702071
dc.relation.projectID info:eu-repo/grantAgreement/UPV//PAID-05-10/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//AGL2012-34213/ES/NUEVAS ESTRATEGIAS PARA LA MEJORA DE LA CALIDAD NUTRACEUTICA DE LA BERENJENA/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Biotecnología - Departament de Biotecnologia es_ES
dc.description.bibliographicCitation Calvo Asensio, I.; Prohens Tomás, J.; Gisbert Domenech, MC. (2014). Vigor for in vitro culture traits in S. melongena x S. aethiopicum Hybrids with potential as Rootstocks for Eggplant. Scientific World Journal. 1-8. https://doi.org/10.1155/2014/702071 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/10.1155/2014/702071 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 8 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.relation.senia 258995 es_ES
dc.identifier.pmid 24592179 en_EN
dc.identifier.pmcid PMC3925514 en_EN
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.contributor.funder Universitat Politècnica de València es_ES
dc.description.references Gisbert, C., Prohens, J., Raigón, M. D., Stommel, J. R., & Nuez, F. (2011). Eggplant relatives as sources of variation for developing new rootstocks: Effects of grafting on eggplant yield and fruit apparent quality and composition. Scientia Horticulturae, 128(1), 14-22. doi:10.1016/j.scienta.2010.12.007 es_ES
dc.description.references Prohens, J., Plazas, M., Raigón, M. D., Seguí-Simarro, J. M., Stommel, J. R., & Vilanova, S. (2012). Characterization of interspecific hybrids and first backcross generations from crosses between two cultivated eggplants (Solanum melongena and S. aethiopicum Kumba group) and implications for eggplant breeding. Euphytica, 186(2), 517-538. doi:10.1007/s10681-012-0652-x es_ES
dc.description.references Collonnier, C., Mulya, K., Fock, I., Mariska, I., Servaes, A., Vedel, F., … Sihachakr, D. (2001). Source of resistance against Ralstonia solanacearum in fertile somatic hybrids of eggplant (Solanum melongena L.) with Solanum aethiopicum L. Plant Science, 160(2), 301-313. doi:10.1016/s0168-9452(00)00394-0 es_ES
dc.description.references Ano, G., Hebert, Y., Prior, P., & Messiaen, C. (1991). A new source of resistance to bacterial wilt of eggplants obtained from a cross: Solanum aethiopicum L × Solanum melongena L. Agronomie, 11(7), 555-560. doi:10.1051/agro:19910703 es_ES
dc.description.references Rizza, F., Mennella, G., Collonnier, C., Sihachakr, D., Kashyap, V., Rajam, M., … Rotino, G. (2002). Androgenic dihaploids from somatic hybrids between Solanum melongena and S. aethiopicum group gilo as a source of resistance to Fusarium oxysporum f. sp. melongenae. Plant Cell Reports, 20(11), 1022-1032. doi:10.1007/s00299-001-0429-5 es_ES
dc.description.references Toppino, L., Valè, G., & Rotino, G. L. (2008). Inheritance of Fusarium wilt resistance introgressed from Solanum aethiopicum Gilo and Aculeatum groups into cultivated eggplant (S. melongena) and development of associated PCR-based markers. Molecular Breeding, 22(2), 237-250. doi:10.1007/s11032-008-9170-x es_ES
dc.description.references Fukuhara, K., & Kubo, I. (1991). Isolation of steroidal glycoalkaloids from Solanum incanum by two countercurrent chromatographic methods. Phytochemistry, 30(2), 685-687. doi:10.1016/0031-9422(91)83753-8 es_ES
dc.description.references Sánchez-Mata, M.-C., Yokoyama, W. E., Hong, Y.-J., & Prohens, J. (2010). α-Solasonine and α-Solamargine Contents of Gboma (Solanum macrocarpon L.) and Scarlet (Solanum aethiopicum L.) Eggplants. Journal of Agricultural and Food Chemistry, 58(9), 5502-5508. doi:10.1021/jf100709g es_ES
dc.description.references OSHIRO, N., KUNIYOSHI, K., NAKAMURA, A., ARAKI, Y., TAMANAHA, K., & INAFUKU, Y. (2008). A Case of Food Poisoning Due to Ingestion of Eggplant, Solanum melongena, Grafted on Devil’s Trumpet, Datura metel. Journal of the Food Hygienic Society of Japan (Shokuhin Eiseigaku Zasshi), 49(5), 376-379. doi:10.3358/shokueishi.49.376 es_ES
dc.description.references Yasinok, A. E., Sahin, F. I., Eyidogan, F., Kuru, M., & Haberal, M. (2009). Grafting tomato plant on tobacco plant and its effect on tomato plant yield and nicotine content. Journal of the Science of Food and Agriculture, 89(7), 1122-1128. doi:10.1002/jsfa.3555 es_ES
dc.description.references Daunay, M. C., Chaput, M. H., Sihachakr, D., Allot, M., Vedel, F., & Ducreux, G. (1993). Production and characterization of fertile somatic hybrids of eggplant (Solanum melongena L.) with Solanum aethiopicum L. Theoretical and Applied Genetics, 85-85(6-7), 841-850. doi:10.1007/bf00225027 es_ES
dc.description.references BOSCAIU, M., DONAT, P. M., LLINARES, J., & VICENTE, O. (2012). Stress-tolerant Wild Plants: a Source of Knowledge and Biotechnological Tools for the Genetic Improvement of Stress Tolerance in Crop Plants. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 40(2), 323. doi:10.15835/nbha4028199 es_ES
dc.description.references Geier, T., Eimert, K., Scherer, R., & Nickel, C. (2008). Production and rooting behaviour of rolB-transgenic plants of grape rootstock ‘Richter 110’ (Vitis berlandieri × V. rupestris). Plant Cell, Tissue and Organ Culture, 94(3), 269-280. doi:10.1007/s11240-008-9352-6 es_ES
dc.description.references Han, J.-S., Park, S., Shigaki, T., Hirschi, K. D., & Kim, C. K. (2009). Improved watermelon quality using bottle gourd rootstock expressing a Ca2+/H+ antiporter. Molecular Breeding, 24(3), 201-211. doi:10.1007/s11032-009-9284-9 es_ES
dc.description.references Li, Y., Zhang, Y., Feng, F., Liang, D., Cheng, L., Ma, F., & Shi, S. (2010). Overexpression of a Malus vacuolar Na+/H+ antiporter gene (MdNHX1) in apple rootstock M.26 and its influence on salt tolerance. Plant Cell, Tissue and Organ Culture (PCTOC), 102(3), 337-345. doi:10.1007/s11240-010-9738-0 es_ES
dc.description.references Kamat, M. G., & Rao, P. S. (1978). Vegetative multiplication of eggplants (Solanum melongena) using tissue culture techniques. Plant Science Letters, 13(1), 57-65. doi:10.1016/0304-4211(78)90065-2 es_ES
dc.description.references Mukherjee, S. K., Rathinasabapathi, B., & Gupta, N. (1991). Low sugar and osmotic requirements for shoot regeneration from leaf pieces of Solanum melongena L. Plant Cell, Tissue and Organ Culture, 25(1), 13-16. doi:10.1007/bf00033906 es_ES
dc.description.references Mansur, E., Magioli, C., de Oliveira, D. E., & Rocha, A. P. M. (1998). Efficient shoot organogenesis of eggplant ( Solanum melongena L.) induced by thidiazuron. Plant Cell Reports, 17(8), 661-663. doi:10.1007/s002990050461 es_ES
dc.description.references Franklin, G., Sheeba, C. J., & Lakshmi Sita, G. (2004). Regeneration of eggplant (Solanum melongena L.) from root explants. In Vitro Cellular & Developmental Biology - Plant, 40(2), 188-191. doi:10.1079/ivp2003491 es_ES
dc.description.references Xing, Y., Yu, Y., Luo, X., Zhang, J.-N., Zhao, B., & Guo, Y.-D. (2010). High efficiency organogenesis and analysis of genetic stability of the regenerants in Solanum melongena. Biologia Plantarum, 54(2), 231-236. doi:10.1007/s10535-010-0041-z es_ES
dc.description.references MATSUOKA, H., & HINATA, K. (1979). NAA-Induced Organogenesis and Embryogenesis in Hypocotyl Callus ofSolarium melongenaL. Journal of Experimental Botany, 30(3), 363-370. doi:10.1093/jxb/30.3.363 es_ES
dc.description.references Gleddie, S., Keller, W., & Setterfield, G. (1983). Somatic embryogenesis and plant regeneration from leaf explants and cell suspensions of Solanum melongena (eggplant). Canadian Journal of Botany, 61(3), 656-666. doi:10.1139/b83-074 es_ES
dc.description.references Prabhavathi, V. (2002). Molecular Breeding, 9(2), 137-147. doi:10.1023/a:1026765026493 es_ES
dc.description.references Arpaia, S., Mennella, G., Onofaro, V., Perri, E., Sunseri, F., & Rotino, G. L. (1997). Production of transgenic eggplant (Solanum melongena L.) resistant to Colorado Potato Beetle (Leptinotarsa decemlineata Say). Theoretical and Applied Genetics, 95(3), 329-334. doi:10.1007/s001220050567 es_ES
dc.description.references Pal, J. K., Singh, M., Rai, M., Satpathy, S., Singh, D. V., & Kumar, S. (2009). Development and bioassay ofCry1Ac-transgenic eggplant (Solanum melongenaL.) resistant to shoot and fruit borer. The Journal of Horticultural Science and Biotechnology, 84(4), 434-438. doi:10.1080/14620316.2009.11512545 es_ES
dc.description.references Gisbert, C., Prohens, J., & Nuez, F. (2006). Efficient regeneration in two potential new crops for subtropical climates, the scarlet(Solanum aethiopicum)and gboma(S. macrocarpon)eggplants. New Zealand Journal of Crop and Horticultural Science, 34(1), 55-62. doi:10.1080/01140671.2006.9514388 es_ES
dc.description.references Murashige, T., & Skoog, F. (1962). A Revised Medium for Rapid Growth and Bio Assays with Tobacco Tissue Cultures. Physiologia Plantarum, 15(3), 473-497. doi:10.1111/j.1399-3054.1962.tb08052.x es_ES
dc.description.references Trujillo-Moya, C., Gisbert, C., Vilanova, S., & Nuez, F. (2011). Localization of QTLs for in vitro plant regeneration in tomato. BMC Plant Biology, 11(1), 140. doi:10.1186/1471-2229-11-140 es_ES
dc.description.references Chitra, D. S. V., & Padmaja, G. (2005). Shoot regeneration via direct organogenesis from in vitro derived leaves of mulberry using thidiazuron and 6-benzylaminopurine. Scientia Horticulturae, 106(4), 593-602. doi:10.1016/j.scienta.2005.05.008 es_ES
dc.description.references B, G., Bilal, H. A., Amir, Z., L, L. X., & Y, H. W. (2011). Thidiazuron: A multi-dimensional plant growth regulator. African Journal of Biotechnology, 10(45), 8984-9000. doi:10.5897/ajb11.636 es_ES
dc.description.references Sun, J., Lei, P. D., Zhang, Z. Z., Shi, G. H., Tang, Z. J., Zhu, S. Y., … Wan, X. C. (2012). Shoot basal ends as novel explants forin vitroplantlet regeneration in an elite clone of tea. The Journal of Horticultural Science and Biotechnology, 87(1), 71-76. doi:10.1080/14620316.2012.11512833 es_ES
dc.description.references Gupta, S., & Mahalaxmi, V. (2009). In vitro high frequency direct plant regeneration from whole leaves of blackberry. Scientia Horticulturae, 120(1), 22-26. doi:10.1016/j.scienta.2008.09.010 es_ES
dc.description.references Sama, A. E., Hughes, H. G., Abbas, M. S., & Shahba, M. A. (2012). An Efficient In Vitro Propagation Protocol of Cocoyam [Xanthosoma sagittifolium(L) Schott]. The Scientific World Journal, 2012, 1-10. doi:10.1100/2012/346595 es_ES
dc.description.references Housti, F., Coupe, M., & d’ Auzac, J. (1992). Effect of ethylene on enzymatic activities involved in the browning of Hevea brasiliensis callus. Physiologia Plantarum, 86(3), 445-450. doi:10.1111/j.1399-3054.1992.tb01342.x es_ES
dc.description.references Wu, L. M., Wei, Y. M., & Zheng, Y. L. (2006). Effects of silver nitrate on the tissue culture of immature wheat embryos. Russian Journal of Plant Physiology, 53(4), 530-534. doi:10.1134/s1021443706040157 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem