Mostrar el registro sencillo del ítem
dc.contributor.author | Reig Valor, Carmina | es_ES |
dc.contributor.author | Mesejo Conejos, Carlos | es_ES |
dc.contributor.author | Martínez Fuentes, Amparo | es_ES |
dc.contributor.author | Iglesias, D.J. | es_ES |
dc.contributor.author | Agustí Fonfría, Manuel | es_ES |
dc.date.accessioned | 2016-04-26T10:46:31Z | |
dc.date.available | 2016-04-26T10:46:31Z | |
dc.date.issued | 2013-06 | |
dc.identifier.issn | 0721-7595 | |
dc.identifier.uri | http://hdl.handle.net/10251/62941 | |
dc.description.abstract | Photosynthate translocation to the root in loquat trees decreases as fruit develops. Thus, during the most active period of fruit development, that is, from 50 % of its final size to the beginning of fruit color change, which correspond to BBCH growth scale stages 705 and 801, both translocating and reducing carbohydrate concentrations diminish greatly. Concomitantly, the results from our experiment show an increased abscisic acid (ABA) concentration and a decrease in the respiration rate detected by an accumulation of glucose-6-phosphate, which paralleled a reduced indole-3-acetic acid (IAA) concentration in roots. As a consequence, root development was strongly and significantly reduced. Because loquat fruit develops in winter and nonshoot growth takes place at this time, our results show that root development in loquat trees is controlled by the fruit, mediated by competition for carbohydrates and modulated by hormones. The experiment was conducted using field-grown loquat during two consecutive years and by comparing fruiting and defruited trees. Fruits were detached from the trees in the early fruit developmental stage (10 % of final size, 701 BBCH growth scale), and carbohydrate concentrations in leaves, shoot bark, and roots, as well as nitrogen fractions (N-NO 3 -, N-NH 4 +, and N-proteinaceous) and hormone (IAA, zeatin, and ABA) concentrations in roots, were analyzed throughout the period of fruit development. Root development was evaluated by counting the emerging lateral root primordia during the fruit developmental stages BBCH growth scale 701-809 (fruit color fully developed). © 2012 Springer Science+Business Media, LLC. | es_ES |
dc.description.sponsorship | The research was supported by the Ministerio de Ciencia e Innovacion-Spain (Project No. AGL2009-09718). The authors thank E. Soler and V. Martinez for technical assistance, the Cooperativa Agricola de Callosa d'En Sarria (Alicante, Spain), for providing the orchards and facilities, and D. Westall (Universitat Politecnica de Valencia) for revising the manuscript. | en_EN |
dc.language | Inglés | es_ES |
dc.publisher | Springer Verlag (Germany) | es_ES |
dc.relation.ispartof | Journal of Plant Growth Regulation | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Carbohydrates | es_ES |
dc.subject | Fruit development | es_ES |
dc.subject | Lateral root primordia | es_ES |
dc.subject | Nitrogen | es_ES |
dc.subject | Plant hormones | es_ES |
dc.subject | Root development | es_ES |
dc.subject.classification | PRODUCCION VEGETAL | es_ES |
dc.title | Fruit Load and Root Development in Field-Grown Loquat Trees (Eriobotrya japonica Lindl) | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1007/s00344-012-9296-2 | |
dc.relation.projectID | info:eu-repo/grantAgreement/MICINN//AGL2009-09718/ES/Influencia Del La Actividad Radicular Sobre La Maduracion Del Fruto Del Nispero Japones. Mecanismos De Interrelacion./ | es_ES |
dc.rights.accessRights | Cerrado | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Producción Vegetal - Departament de Producció Vegetal | es_ES |
dc.description.bibliographicCitation | Reig Valor, C.; Mesejo Conejos, C.; Martínez Fuentes, A.; Iglesias, D.; Agustí Fonfría, M. (2013). Fruit Load and Root Development in Field-Grown Loquat Trees (Eriobotrya japonica Lindl). Journal of Plant Growth Regulation. 32(2):281-290. https://doi.org/10.1007/s00344-012-9296-2 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | http://dx.doi.org/10.1007/s00344-012-9296-2 | es_ES |
dc.description.upvformatpinicio | 281 | es_ES |
dc.description.upvformatpfin | 290 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 32 | es_ES |
dc.description.issue | 2 | es_ES |
dc.relation.senia | 260719 | es_ES |
dc.contributor.funder | Ministerio de Ciencia e Innovación | es_ES |
dc.description.references | Agustí M, Juan M, Almela V, Gariglio N (2000) Loquat fruit size is increased through the thinning effect of naphthaleneacetic acid. Plant Growth Regul 31:167–171 | es_ES |
dc.description.references | Agustí M, Gariglio N, Juan M, Almela V, Mesejo C, Martínez-Fuentes A (2005) Effect of branch scoring on fruit development in loquat. J Hortic Sci 80:370–374 | es_ES |
dc.description.references | AOAC (2005) Official methods of analysis of the association of official analytical chemists, 14th edn. AOAC, Arlington, VA, pp 611–613 | es_ES |
dc.description.references | Atkinson D (1983) The growth, activity and distribution of the fruit tree root system. Plant Soil 71:23–35 | es_ES |
dc.description.references | Ben-Cheikh W, Pérez-Botella J, Tadeo FR, Talón M, Primo-Millo E (1997) Pollination increases gibberellin levels in developing ovaries of seeded varieties of citrus. Plant Physiol 114:557–564 | es_ES |
dc.description.references | Bevington KB, Castle WS (1985) Annual root growth pattern of young citrus trees in relation to shoot growth, soil temperature and soil water content. J Am Soc Hortic Sci 110:840–845 | es_ES |
dc.description.references | Bleiholder H, van den Boom T, Langelüddeke P, Stauß R (1989) Einheitliche Codierung der phänologischen Stadien bei. Kultur- und Schadpflanzen- Gesunde Pflanzen 41:381–384 | es_ES |
dc.description.references | Blilou I, Xu J, Wildwater M, Willemsen V, Paponov I, Friml J, Heidstra R, Aida M, Palme K, Acheres B (2005) The PIN auxin efflux facilitator network controls growth and patterning in Arabidopsis roots. Nature 433:39–44 | es_ES |
dc.description.references | Blumenfeld A (1980) Fruit growth of loquat. J Am Soc Hortic Sci 105:747–750 | es_ES |
dc.description.references | Canellas LP, Lopes F, Okorokova-Façanha AL, Rocha A (2002) Humic acid isolated from earthworm compost enhance root elongation, lateral root emergence, and plasma membrane H+-ATPase activity in maize roots. Plant Physiol 130:1951–1957 | es_ES |
dc.description.references | Casimiro I, Beeckman T, Graham N, Bhalerao R, Zhang H, Casero P, Sandberg G, Bennett MJ (2003) Dissecting Arabidopsis lateral root development. Trends Plant Sci 8:165–171 | es_ES |
dc.description.references | Castle WS (1978) Citrus root system: their structure, function, growth and relationship to tree performance. Proc Int Soc Citric 1:62–69 | es_ES |
dc.description.references | Cuevas J, Cañete ML, Pinillos V, Zapata AJ, Fernández MD, González M, Hueso JJ (2007) Optimal dates of regulated deficit irrigation in ‘Algerie’ loquat (Eriobotrya japónica Lindl) cultivated in southeast Spain. Agric Water Manage 89:131–136 | es_ES |
dc.description.references | De Smet I, Signora L, Beeckman T, Inzé D, Foyer CH, Zhang H (2003) An abscisic acid-sensitive checkpoint in lateral root development of Arabidopsis. Plant J 33:543–555 | es_ES |
dc.description.references | De Smet I, Zhang H, Inzé D, Beeckman T (2006) A novel role for abscisic acid emerges from underground. Trends Plant Sci 11:434–439 | es_ES |
dc.description.references | De Smet I, Tetsumura T, De Rybel B, Frei dit Frei N, Laplaze L, Casimiro I, Swarup R, Naudts M, Vanneste S, Audenaert D, Inzé D, Bennet MJ, Beeckman T (2007) Auxin-dependent regulation of lateral root positioning in the basal meristem of Arabidopsis. Development 134:681–690 | es_ES |
dc.description.references | Faust M (1989) Physiology of temperate zone fruit trees. Wiley, New York, p 338 | es_ES |
dc.description.references | Gariglio N, Castillo A, Juan M, Almela V, Agustí M (2003) Effects of fruit thinning on fruit growth, sugars and purple spot in loquat fruit (Eriobotrya japonica Lindl.). J Hortic Sci Biotechnol 78:32–34 | es_ES |
dc.description.references | Gaskin P, MacMillan J (1991) Discussion of spectra of TMSi ester TMSi ethers. In: Gaskin P, MacMillan J (eds) GC-MS of the gibberellin and related compounds: methodology and a library of spectra. Cantocks Enterprises Ltd/University of Bristol, Bristol, pp 59–67 | es_ES |
dc.description.references | Gifford RM, Evans LT (1981) Photosynthesis, carbon partitioning, and yield. Annu Rev Plant Physiol 32:485–509 | es_ES |
dc.description.references | Glenn DM, Walker WV (1993) Root development patterns in field grown peach trees. J Am Soc Hortic Sci 118:362–365 | es_ES |
dc.description.references | Goldschmidt EE (1984) Endogenous abscisic acid and 2-trans-abscisic acid in alternate bearing ‘Wilking’ mandarin trees. Plant Growth Regul 2:9–13 | es_ES |
dc.description.references | Grossman YL, Dejong TM (1994) Peach: a simulation model of reproductive and vegetative growth in peach trees. Tree Physiol 14:329–345 | es_ES |
dc.description.references | Hack H, Bleiholder H, Buhr L, Meier U, Schnock-Fricke U, Webber E, Witzenberger A (1992) Einheitliche Codierung der phänologischen Entwick-lungsstadien mono- und dikotyler Pflanzen-Erweiterte BBCH-Skala, Allgemein. Nachrichtenbl Deut Pflanzenschutzd 44:265–270 | es_ES |
dc.description.references | Ho LC, Grange RI, Shaw AF (1989) Source/sink regulation. In: Milburn JA, Baker DA (eds) Transport of photoassimilates. Longman Scientific and Technical, Harlow, pp 306–343 | es_ES |
dc.description.references | Horgan R (1995) Instrumental methods of plant hormone analysis. In: Davies PJ (ed) Plant hormones. Physiology, biochemistry and molecular biology. Kluwer Publishers, London, pp 415–432 | es_ES |
dc.description.references | Jiang K, Feldman LJ (2003) Root meristem establishment and maintenance: the role of auxin. J Plant Growth Regul 21:432–440 | es_ES |
dc.description.references | Letham DS (1994) Cytokinins and phytohormones—sites of biosynthesis, translocation and function of translocated cytokinin. In: Mok DW, Mok MC (eds) Cytokinins—chemistry, activity, and function. CRC Press, Boca Raton, pp 57–80 | es_ES |
dc.description.references | Marini RP, Sowers DL (1994) Peach fruit weight is influenced by crop density and fruiting shoot length but not position on the shoot. J Am Soc Hortic Sci 119:180–184 | es_ES |
dc.description.references | Martinez-Calvo J, Badenes ML, Llácer G, Bleiholder H, Hack H, Meier U (1999) Phenological growth stages of loquat tree [Eriobotrya japonica (Thumb.) Lindl.]. Ann Appl Biol 134:353–357 | es_ES |
dc.description.references | Patrick JW (1991) Control of phloem transport to and short-distance transfer in sink regions: an overview. In: Bonnemain JL, Relrot S, Lucas W, Dainty J (eds) Recent advances in phloem transport and assimilate compartmentation. Ouest Editions, Nantes, pp 167–177 | es_ES |
dc.description.references | Pregitzer KS, Laskowski MJ, Burton AJ, Lessard VC, Zak DR (1998) Variation in sugar maple root respiration with root diameter and soil depth. Tree Physiol 18:665–670 | es_ES |
dc.description.references | Quinlan JD (1965) The pattern of distribution of 14C in a potted apple rootstock following assimilation of 14C dioxide by a single leaf. 1964 Rpt East Malling Res Sta, pp 117–118 | es_ES |
dc.description.references | Raigón MD, Pérez-García M, Maquieira A, Puchades R (1992) Determination of available nitrogen (nitric and ammoniacal) in soils by flow injection analysis. Analysis 20:483–487 | es_ES |
dc.description.references | Reed RC, Brady SR, Muday GK (1998) Inhibition of auxin movement from the shoot into the root inhibits lateral root development in Arabidopsis. Plant Physiol 118:1369–1378 | es_ES |
dc.description.references | Reig C, Agustí M (2011) La acción del fruto en el desarrollo del níspero japonés (Eriobotrya japonica Lindl.). El fruto y su relación con el desarrollo del árbol frutal. EAE-LAP Lambert Academic Publishing GmbH & Co. KG, Saarbrücken, p 187 | es_ES |
dc.description.references | Reig C, Farina V, Volpe G, Mesejo C, Martínez-Fuentes A, Barone F, Calbrese F, Agustí M (2011) Gibberellic acid and flower bud development in loquat (Eriobotrya japonica Lindl.). Sci Hortic 129:27–31 | es_ES |
dc.description.references | Rivas F, Gravina A, Agustí M (2007) Girdling effects on fruit set and quantum yield efficiency of PSII in two Citrus cultivars. Tree Physiol 27:527–535 | es_ES |
dc.description.references | Rodriguez A (1983) El cultivo del níspero y el valle del Algar-Guadalest. Ed Soc Coop Cred, Callosa d’En Sarriá, p 262 | es_ES |
dc.description.references | Rogers WS, Head GC (1969) Factors affecting the distribution and growth of roots of perennial woody species. In: Whittington W (ed) Root growth. Butterworth, London, pp 280–295 | es_ES |
dc.description.references | Signora L, De Smet I, Foyer CH, Zhang H (2001) ABA plays a central role in mediating the regulatory effects of nitrate on root branching in Arabidopsis. Plant J 28:655–662 | es_ES |
dc.description.references | Skoog F, Miller CO (1957) Chemical regulation of growth and organ formation in plant tissues cultured in vitro. Proc Symp Soc Exp Biol 54:118–130 | es_ES |
dc.description.references | Takahashi F, Sato-Nara K, Kobayashi K, Suzuki M, Suzuki H (2003) Sugar-induced adventitious roots in Arabidopsis seedlings. J Plant Res 116:83–91 | es_ES |
dc.description.references | UPOV (1995) Working paper on test guidelines for loquat (Eriobotrya japonica Lindl.). Technical Working Party for Fruit Crops, 26th session, Canterbury, 11–16 Sept 1995, p 16 | es_ES |
dc.description.references | Williamson JG, Coston DC (1989) The relationship among root growth, shoot growth, and fruit growth peach. J Am Soc Hortic Sci 114:180–183 | es_ES |
dc.description.references | Zaminski E, Schaffer AA (1996) Photoassimilate distribution in plants and crops: source–sink relationships. Marcel Dekker, New York, p 905 | es_ES |