- -

Fruit Load and Root Development in Field-Grown Loquat Trees (Eriobotrya japonica Lindl)

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Fruit Load and Root Development in Field-Grown Loquat Trees (Eriobotrya japonica Lindl)

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Reig Valor, Carmina es_ES
dc.contributor.author Mesejo Conejos, Carlos es_ES
dc.contributor.author Martínez Fuentes, Amparo es_ES
dc.contributor.author Iglesias, D.J. es_ES
dc.contributor.author Agustí Fonfría, Manuel es_ES
dc.date.accessioned 2016-04-26T10:46:31Z
dc.date.available 2016-04-26T10:46:31Z
dc.date.issued 2013-06
dc.identifier.issn 0721-7595
dc.identifier.uri http://hdl.handle.net/10251/62941
dc.description.abstract Photosynthate translocation to the root in loquat trees decreases as fruit develops. Thus, during the most active period of fruit development, that is, from 50 % of its final size to the beginning of fruit color change, which correspond to BBCH growth scale stages 705 and 801, both translocating and reducing carbohydrate concentrations diminish greatly. Concomitantly, the results from our experiment show an increased abscisic acid (ABA) concentration and a decrease in the respiration rate detected by an accumulation of glucose-6-phosphate, which paralleled a reduced indole-3-acetic acid (IAA) concentration in roots. As a consequence, root development was strongly and significantly reduced. Because loquat fruit develops in winter and nonshoot growth takes place at this time, our results show that root development in loquat trees is controlled by the fruit, mediated by competition for carbohydrates and modulated by hormones. The experiment was conducted using field-grown loquat during two consecutive years and by comparing fruiting and defruited trees. Fruits were detached from the trees in the early fruit developmental stage (10 % of final size, 701 BBCH growth scale), and carbohydrate concentrations in leaves, shoot bark, and roots, as well as nitrogen fractions (N-NO 3 -, N-NH 4 +, and N-proteinaceous) and hormone (IAA, zeatin, and ABA) concentrations in roots, were analyzed throughout the period of fruit development. Root development was evaluated by counting the emerging lateral root primordia during the fruit developmental stages BBCH growth scale 701-809 (fruit color fully developed). © 2012 Springer Science+Business Media, LLC. es_ES
dc.description.sponsorship The research was supported by the Ministerio de Ciencia e Innovacion-Spain (Project No. AGL2009-09718). The authors thank E. Soler and V. Martinez for technical assistance, the Cooperativa Agricola de Callosa d'En Sarria (Alicante, Spain), for providing the orchards and facilities, and D. Westall (Universitat Politecnica de Valencia) for revising the manuscript. en_EN
dc.language Inglés es_ES
dc.publisher Springer Verlag (Germany) es_ES
dc.relation.ispartof Journal of Plant Growth Regulation es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Carbohydrates es_ES
dc.subject Fruit development es_ES
dc.subject Lateral root primordia es_ES
dc.subject Nitrogen es_ES
dc.subject Plant hormones es_ES
dc.subject Root development es_ES
dc.subject.classification PRODUCCION VEGETAL es_ES
dc.title Fruit Load and Root Development in Field-Grown Loquat Trees (Eriobotrya japonica Lindl) es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1007/s00344-012-9296-2
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//AGL2009-09718/ES/Influencia Del La Actividad Radicular Sobre La Maduracion Del Fruto Del Nispero Japones. Mecanismos De Interrelacion./ es_ES
dc.rights.accessRights Cerrado es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Producción Vegetal - Departament de Producció Vegetal es_ES
dc.description.bibliographicCitation Reig Valor, C.; Mesejo Conejos, C.; Martínez Fuentes, A.; Iglesias, D.; Agustí Fonfría, M. (2013). Fruit Load and Root Development in Field-Grown Loquat Trees (Eriobotrya japonica Lindl). Journal of Plant Growth Regulation. 32(2):281-290. https://doi.org/10.1007/s00344-012-9296-2 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/10.1007/s00344-012-9296-2 es_ES
dc.description.upvformatpinicio 281 es_ES
dc.description.upvformatpfin 290 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 32 es_ES
dc.description.issue 2 es_ES
dc.relation.senia 260719 es_ES
dc.contributor.funder Ministerio de Ciencia e Innovación es_ES
dc.description.references Agustí M, Juan M, Almela V, Gariglio N (2000) Loquat fruit size is increased through the thinning effect of naphthaleneacetic acid. Plant Growth Regul 31:167–171 es_ES
dc.description.references Agustí M, Gariglio N, Juan M, Almela V, Mesejo C, Martínez-Fuentes A (2005) Effect of branch scoring on fruit development in loquat. J Hortic Sci 80:370–374 es_ES
dc.description.references AOAC (2005) Official methods of analysis of the association of official analytical chemists, 14th edn. AOAC, Arlington, VA, pp 611–613 es_ES
dc.description.references Atkinson D (1983) The growth, activity and distribution of the fruit tree root system. Plant Soil 71:23–35 es_ES
dc.description.references Ben-Cheikh W, Pérez-Botella J, Tadeo FR, Talón M, Primo-Millo E (1997) Pollination increases gibberellin levels in developing ovaries of seeded varieties of citrus. Plant Physiol 114:557–564 es_ES
dc.description.references Bevington KB, Castle WS (1985) Annual root growth pattern of young citrus trees in relation to shoot growth, soil temperature and soil water content. J Am Soc Hortic Sci 110:840–845 es_ES
dc.description.references Bleiholder H, van den Boom T, Langelüddeke P, Stauß R (1989) Einheitliche Codierung der phänologischen Stadien bei. Kultur- und Schadpflanzen- Gesunde Pflanzen 41:381–384 es_ES
dc.description.references Blilou I, Xu J, Wildwater M, Willemsen V, Paponov I, Friml J, Heidstra R, Aida M, Palme K, Acheres B (2005) The PIN auxin efflux facilitator network controls growth and patterning in Arabidopsis roots. Nature 433:39–44 es_ES
dc.description.references Blumenfeld A (1980) Fruit growth of loquat. J Am Soc Hortic Sci 105:747–750 es_ES
dc.description.references Canellas LP, Lopes F, Okorokova-Façanha AL, Rocha A (2002) Humic acid isolated from earthworm compost enhance root elongation, lateral root emergence, and plasma membrane H+-ATPase activity in maize roots. Plant Physiol 130:1951–1957 es_ES
dc.description.references Casimiro I, Beeckman T, Graham N, Bhalerao R, Zhang H, Casero P, Sandberg G, Bennett MJ (2003) Dissecting Arabidopsis lateral root development. Trends Plant Sci 8:165–171 es_ES
dc.description.references Castle WS (1978) Citrus root system: their structure, function, growth and relationship to tree performance. Proc Int Soc Citric 1:62–69 es_ES
dc.description.references Cuevas J, Cañete ML, Pinillos V, Zapata AJ, Fernández MD, González M, Hueso JJ (2007) Optimal dates of regulated deficit irrigation in ‘Algerie’ loquat (Eriobotrya japónica Lindl) cultivated in southeast Spain. Agric Water Manage 89:131–136 es_ES
dc.description.references De Smet I, Signora L, Beeckman T, Inzé D, Foyer CH, Zhang H (2003) An abscisic acid-sensitive checkpoint in lateral root development of Arabidopsis. Plant J 33:543–555 es_ES
dc.description.references De Smet I, Zhang H, Inzé D, Beeckman T (2006) A novel role for abscisic acid emerges from underground. Trends Plant Sci 11:434–439 es_ES
dc.description.references De Smet I, Tetsumura T, De Rybel B, Frei dit Frei N, Laplaze L, Casimiro I, Swarup R, Naudts M, Vanneste S, Audenaert D, Inzé D, Bennet MJ, Beeckman T (2007) Auxin-dependent regulation of lateral root positioning in the basal meristem of Arabidopsis. Development 134:681–690 es_ES
dc.description.references Faust M (1989) Physiology of temperate zone fruit trees. Wiley, New York, p 338 es_ES
dc.description.references Gariglio N, Castillo A, Juan M, Almela V, Agustí M (2003) Effects of fruit thinning on fruit growth, sugars and purple spot in loquat fruit (Eriobotrya japonica Lindl.). J Hortic Sci Biotechnol 78:32–34 es_ES
dc.description.references Gaskin P, MacMillan J (1991) Discussion of spectra of TMSi ester TMSi ethers. In: Gaskin P, MacMillan J (eds) GC-MS of the gibberellin and related compounds: methodology and a library of spectra. Cantocks Enterprises Ltd/University of Bristol, Bristol, pp 59–67 es_ES
dc.description.references Gifford RM, Evans LT (1981) Photosynthesis, carbon partitioning, and yield. Annu Rev Plant Physiol 32:485–509 es_ES
dc.description.references Glenn DM, Walker WV (1993) Root development patterns in field grown peach trees. J Am Soc Hortic Sci 118:362–365 es_ES
dc.description.references Goldschmidt EE (1984) Endogenous abscisic acid and 2-trans-abscisic acid in alternate bearing ‘Wilking’ mandarin trees. Plant Growth Regul 2:9–13 es_ES
dc.description.references Grossman YL, Dejong TM (1994) Peach: a simulation model of reproductive and vegetative growth in peach trees. Tree Physiol 14:329–345 es_ES
dc.description.references Hack H, Bleiholder H, Buhr L, Meier U, Schnock-Fricke U, Webber E, Witzenberger A (1992) Einheitliche Codierung der phänologischen Entwick-lungsstadien mono- und dikotyler Pflanzen-Erweiterte BBCH-Skala, Allgemein. Nachrichtenbl Deut Pflanzenschutzd 44:265–270 es_ES
dc.description.references Ho LC, Grange RI, Shaw AF (1989) Source/sink regulation. In: Milburn JA, Baker DA (eds) Transport of photoassimilates. Longman Scientific and Technical, Harlow, pp 306–343 es_ES
dc.description.references Horgan R (1995) Instrumental methods of plant hormone analysis. In: Davies PJ (ed) Plant hormones. Physiology, biochemistry and molecular biology. Kluwer Publishers, London, pp 415–432 es_ES
dc.description.references Jiang K, Feldman LJ (2003) Root meristem establishment and maintenance: the role of auxin. J Plant Growth Regul 21:432–440 es_ES
dc.description.references Letham DS (1994) Cytokinins and phytohormones—sites of biosynthesis, translocation and function of translocated cytokinin. In: Mok DW, Mok MC (eds) Cytokinins—chemistry, activity, and function. CRC Press, Boca Raton, pp 57–80 es_ES
dc.description.references Marini RP, Sowers DL (1994) Peach fruit weight is influenced by crop density and fruiting shoot length but not position on the shoot. J Am Soc Hortic Sci 119:180–184 es_ES
dc.description.references Martinez-Calvo J, Badenes ML, Llácer G, Bleiholder H, Hack H, Meier U (1999) Phenological growth stages of loquat tree [Eriobotrya japonica (Thumb.) Lindl.]. Ann Appl Biol 134:353–357 es_ES
dc.description.references Patrick JW (1991) Control of phloem transport to and short-distance transfer in sink regions: an overview. In: Bonnemain JL, Relrot S, Lucas W, Dainty J (eds) Recent advances in phloem transport and assimilate compartmentation. Ouest Editions, Nantes, pp 167–177 es_ES
dc.description.references Pregitzer KS, Laskowski MJ, Burton AJ, Lessard VC, Zak DR (1998) Variation in sugar maple root respiration with root diameter and soil depth. Tree Physiol 18:665–670 es_ES
dc.description.references Quinlan JD (1965) The pattern of distribution of 14C in a potted apple rootstock following assimilation of 14C dioxide by a single leaf. 1964 Rpt East Malling Res Sta, pp 117–118 es_ES
dc.description.references Raigón MD, Pérez-García M, Maquieira A, Puchades R (1992) Determination of available nitrogen (nitric and ammoniacal) in soils by flow injection analysis. Analysis 20:483–487 es_ES
dc.description.references Reed RC, Brady SR, Muday GK (1998) Inhibition of auxin movement from the shoot into the root inhibits lateral root development in Arabidopsis. Plant Physiol 118:1369–1378 es_ES
dc.description.references Reig C, Agustí M (2011) La acción del fruto en el desarrollo del níspero japonés (Eriobotrya japonica Lindl.). El fruto y su relación con el desarrollo del árbol frutal. EAE-LAP Lambert Academic Publishing GmbH & Co. KG, Saarbrücken, p 187 es_ES
dc.description.references Reig C, Farina V, Volpe G, Mesejo C, Martínez-Fuentes A, Barone F, Calbrese F, Agustí M (2011) Gibberellic acid and flower bud development in loquat (Eriobotrya japonica Lindl.). Sci Hortic 129:27–31 es_ES
dc.description.references Rivas F, Gravina A, Agustí M (2007) Girdling effects on fruit set and quantum yield efficiency of PSII in two Citrus cultivars. Tree Physiol 27:527–535 es_ES
dc.description.references Rodriguez A (1983) El cultivo del níspero y el valle del Algar-Guadalest. Ed Soc Coop Cred, Callosa d’En Sarriá, p 262 es_ES
dc.description.references Rogers WS, Head GC (1969) Factors affecting the distribution and growth of roots of perennial woody species. In: Whittington W (ed) Root growth. Butterworth, London, pp 280–295 es_ES
dc.description.references Signora L, De Smet I, Foyer CH, Zhang H (2001) ABA plays a central role in mediating the regulatory effects of nitrate on root branching in Arabidopsis. Plant J 28:655–662 es_ES
dc.description.references Skoog F, Miller CO (1957) Chemical regulation of growth and organ formation in plant tissues cultured in vitro. Proc Symp Soc Exp Biol 54:118–130 es_ES
dc.description.references Takahashi F, Sato-Nara K, Kobayashi K, Suzuki M, Suzuki H (2003) Sugar-induced adventitious roots in Arabidopsis seedlings. J Plant Res 116:83–91 es_ES
dc.description.references UPOV (1995) Working paper on test guidelines for loquat (Eriobotrya japonica Lindl.). Technical Working Party for Fruit Crops, 26th session, Canterbury, 11–16 Sept 1995, p 16 es_ES
dc.description.references Williamson JG, Coston DC (1989) The relationship among root growth, shoot growth, and fruit growth peach. J Am Soc Hortic Sci 114:180–183 es_ES
dc.description.references Zaminski E, Schaffer AA (1996) Photoassimilate distribution in plants and crops: source–sink relationships. Marcel Dekker, New York, p 905 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem