Mostrar el registro sencillo del ítem
dc.contributor.author | Dimant, Verónica | es_ES |
dc.contributor.author | García, Domingo | es_ES |
dc.contributor.author | Maestre, Manuel | es_ES |
dc.contributor.author | Sevilla Peris, Pablo | es_ES |
dc.date.accessioned | 2016-04-27T07:20:13Z | |
dc.date.available | 2016-04-27T07:20:13Z | |
dc.date.issued | 2014 | |
dc.identifier.issn | 1085-3375 | |
dc.identifier.uri | http://hdl.handle.net/10251/63027 | |
dc.description.abstract | For two complex Banach spaces X and Y, in this paper, we study the generalized spectrum M-b(X,Y) of all nonzero algebra homomorphisms from H-b(X), the algebra of all bounded type entire functions on X into H-b(Y). We endow M-b(X,Y) with a structure of Riemann domain over L(X*,Y*) whenever.. is symmetrically regular. The size of the fibers is also studied. Following the philosophy of ( Aron et al., 1991), this is a step to study the set M-b,M-infinity (X,B-Y) of all nonzero algebra homomorphisms from Hb(b) (X) into H-infinity (B-Y) of bounded holomorphic functions on the open unit ball of Y and M-infinity(B-X,B-Y) of all nonzero algebra homomorphisms from H-infinity(B-X) into H infinity (B-Y). | es_ES |
dc.description.sponsorship | This work was initiated in June 2012, when the first named author visited the Universidad de Valencia and the Universitat Politecnica de Valencia. She wishes to thank all the people in and outside both universities who made that visit such a delightful time. The first named author was partially supported by research projects CONICET PIP 0624 and ANPCyT PICT 1456. The second, third, and fourth named authors were supported by research project MICINN MTM2011-22417. The second and third named authors also by research project Prometeo II/2013/013. | en_EN |
dc.language | Inglés | es_ES |
dc.publisher | Hindawi Publishing Corporation | es_ES |
dc.relation.ispartof | Abstract and Applied Analysis | es_ES |
dc.rights | Reconocimiento (by) | es_ES |
dc.subject | Analytic functions | es_ES |
dc.subject | Banach spaces | es_ES |
dc.subject | Polynomials | es_ES |
dc.subject | Continuity | es_ES |
dc.subject | Mappings | es_ES |
dc.subject | Theorem | es_ES |
dc.subject | Spectra | es_ES |
dc.subject.classification | MATEMATICA APLICADA | es_ES |
dc.title | Homomorphisms between algebras of holomorphic functions | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1155/2014/612304 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/CONICET//PIP 0624/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/ANPCyT//PICT-2011-1456/AR/Análisis multilineal y complejo en espacios de Banach/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MICINN//MTM2011-22417/ES/ESPACIOS Y ALGEBRAS DE FUNCIONES DIFERENCIABLES/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/GVA//PROMETEOII%2F2013%2F013/ES/Análisis funcional, teoría de operadores y sus aplicaciones (AFUNTOP)/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada | es_ES |
dc.description.bibliographicCitation | Dimant, V.; García, D.; Maestre, M.; Sevilla Peris, P. (2014). Homomorphisms between algebras of holomorphic functions. Abstract and Applied Analysis. 2014(612304):1-13. https://doi.org/10.1155/2014/612304 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | http://dx.doi.org/10.1155/2014/612304 | es_ES |
dc.description.upvformatpinicio | 1 | es_ES |
dc.description.upvformatpfin | 13 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 2014 | |
dc.description.issue | 612304 | |
dc.relation.senia | 286455 | es_ES |
dc.identifier.eissn | 1687-0409 | |
dc.contributor.funder | Generalitat Valenciana | es_ES |
dc.contributor.funder | Consejo Nacional de Investigaciones Científicas y Técnicas, Argentina | es_ES |
dc.contributor.funder | Ministerio de Ciencia e Innovación | es_ES |
dc.contributor.funder | Agencia Nacional de Promoción Científica y Tecnológica, Argentina | es_ES |
dc.description.references | Carando, D., García, D., & Maestre, M. (2005). Homomorphisms and composition operators on algebras of analytic functions of bounded type. Advances in Mathematics, 197(2), 607-629. doi:10.1016/j.aim.2004.10.018 | es_ES |
dc.description.references | Aron, R. M., Galindo, P., García, D., & Maestre, M. (1996). Transactions of the American Mathematical Society, 348(02), 543-560. doi:10.1090/s0002-9947-96-01553-x | es_ES |
dc.description.references | Dineen, S. (1999). Complex Analysis on Infinite Dimensional Spaces. Springer Monographs in Mathematics. doi:10.1007/978-1-4471-0869-6 | es_ES |
dc.description.references | Beltrán, M. J. (2012). Spectra of weighted (LB)-algebras of entire functions on Banach spaces. Journal of Mathematical Analysis and Applications, 387(2), 604-617. doi:10.1016/j.jmaa.2011.09.022 | es_ES |
dc.description.references | Carando, D., García, D., Maestre, M., & Sevilla-Peris, P. (2009). A Riemann manifold structure of the spectra of weighted algebras of holomorphic functions. Topology, 48(2-4), 54-65. doi:10.1016/j.top.2009.11.003 | es_ES |
dc.description.references | Carando, D., & Sevilla-Peris, P. (2008). Spectra of weighted algebras of holomorphic functions. Mathematische Zeitschrift, 263(4), 887-902. doi:10.1007/s00209-008-0444-0 | es_ES |
dc.description.references | Davie, A. M., & Gamelin, T. W. (1989). A Theorem on Polynomial-Star Approximation. Proceedings of the American Mathematical Society, 106(2), 351. doi:10.2307/2048812 | es_ES |
dc.description.references | Barroso, J. A., Matos, M. C., & Nachbin, L. (1977). On Holomorphy Versus Linearity in Classifying Locally Convex Spaces. North-Holland Mathematics Studies, 31-74. doi:10.1016/s0304-0208(08)72193-5 | es_ES |
dc.description.references | Lassalle, S., & Zalduendo, I. (2000). To what extent does the dual Banach space E′ determine the polynomials over E? Arkiv för Matematik, 38(2), 343-354. doi:10.1007/bf02384324 | es_ES |
dc.description.references | Carando, D., & Muro, S. (2012). Envelopes of holomorphy and extension of functions of bounded type. Advances in Mathematics, 229(3), 2098-2121. doi:10.1016/j.aim.2011.10.019 | es_ES |
dc.description.references | Boyd, C., & Ryan, R. A. (1998). Bounded weak continuity of homogeneous polynomials at the origin. Archiv der Mathematik, 71(3), 211-218. doi:10.1007/s000130050254 | es_ES |
dc.description.references | Aron, R., & Dimant, V. (2002). Sets of weak sequential continuity for polynomials. Indagationes Mathematicae, 13(3), 287-299. doi:10.1016/s0019-3577(02)80012-x | es_ES |
dc.description.references | GROSSE-ERDMANN, K.-G. (2004). A weak criterion for vector-valued holomorphy. Mathematical Proceedings of the Cambridge Philosophical Society, 136(2), 399-411. doi:10.1017/s0305004103007254 | es_ES |
dc.description.references | Mujica, J. (1991). Linearization of Bounded Holomorphic Mappings on Banach Spaces. Transactions of the American Mathematical Society, 324(2), 867. doi:10.2307/2001745 | es_ES |