- -

Homomorphisms between algebras of holomorphic functions

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Homomorphisms between algebras of holomorphic functions

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Dimant, Verónica es_ES
dc.contributor.author García, Domingo es_ES
dc.contributor.author Maestre, Manuel es_ES
dc.contributor.author Sevilla Peris, Pablo es_ES
dc.date.accessioned 2016-04-27T07:20:13Z
dc.date.available 2016-04-27T07:20:13Z
dc.date.issued 2014
dc.identifier.issn 1085-3375
dc.identifier.uri http://hdl.handle.net/10251/63027
dc.description.abstract For two complex Banach spaces X and Y, in this paper, we study the generalized spectrum M-b(X,Y) of all nonzero algebra homomorphisms from H-b(X), the algebra of all bounded type entire functions on X into H-b(Y). We endow M-b(X,Y) with a structure of Riemann domain over L(X*,Y*) whenever.. is symmetrically regular. The size of the fibers is also studied. Following the philosophy of ( Aron et al., 1991), this is a step to study the set M-b,M-infinity (X,B-Y) of all nonzero algebra homomorphisms from Hb(b) (X) into H-infinity (B-Y) of bounded holomorphic functions on the open unit ball of Y and M-infinity(B-X,B-Y) of all nonzero algebra homomorphisms from H-infinity(B-X) into H infinity (B-Y). es_ES
dc.description.sponsorship This work was initiated in June 2012, when the first named author visited the Universidad de Valencia and the Universitat Politecnica de Valencia. She wishes to thank all the people in and outside both universities who made that visit such a delightful time. The first named author was partially supported by research projects CONICET PIP 0624 and ANPCyT PICT 1456. The second, third, and fourth named authors were supported by research project MICINN MTM2011-22417. The second and third named authors also by research project Prometeo II/2013/013. en_EN
dc.language Inglés es_ES
dc.publisher Hindawi Publishing Corporation es_ES
dc.relation.ispartof Abstract and Applied Analysis es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Analytic functions es_ES
dc.subject Banach spaces es_ES
dc.subject Polynomials es_ES
dc.subject Continuity es_ES
dc.subject Mappings es_ES
dc.subject Theorem es_ES
dc.subject Spectra es_ES
dc.subject.classification MATEMATICA APLICADA es_ES
dc.title Homomorphisms between algebras of holomorphic functions es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1155/2014/612304 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/CONICET//PIP 0624/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/ANPCyT//PICT-2011-1456/AR/Análisis multilineal y complejo en espacios de Banach/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//MTM2011-22417/ES/ESPACIOS Y ALGEBRAS DE FUNCIONES DIFERENCIABLES/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//PROMETEOII%2F2013%2F013/ES/Análisis funcional, teoría de operadores y sus aplicaciones (AFUNTOP)/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada es_ES
dc.description.bibliographicCitation Dimant, V.; García, D.; Maestre, M.; Sevilla Peris, P. (2014). Homomorphisms between algebras of holomorphic functions. Abstract and Applied Analysis. 2014(612304):1-13. https://doi.org/10.1155/2014/612304 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/10.1155/2014/612304 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 13 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 2014
dc.description.issue 612304
dc.relation.senia 286455 es_ES
dc.identifier.eissn 1687-0409
dc.contributor.funder Generalitat Valenciana es_ES
dc.contributor.funder Consejo Nacional de Investigaciones Científicas y Técnicas, Argentina es_ES
dc.contributor.funder Ministerio de Ciencia e Innovación es_ES
dc.contributor.funder Agencia Nacional de Promoción Científica y Tecnológica, Argentina es_ES
dc.description.references Carando, D., García, D., & Maestre, M. (2005). Homomorphisms and composition operators on algebras of analytic functions of bounded type. Advances in Mathematics, 197(2), 607-629. doi:10.1016/j.aim.2004.10.018 es_ES
dc.description.references Aron, R. M., Galindo, P., García, D., & Maestre, M. (1996). Transactions of the American Mathematical Society, 348(02), 543-560. doi:10.1090/s0002-9947-96-01553-x es_ES
dc.description.references Dineen, S. (1999). Complex Analysis on Infinite Dimensional Spaces. Springer Monographs in Mathematics. doi:10.1007/978-1-4471-0869-6 es_ES
dc.description.references Beltrán, M. J. (2012). Spectra of weighted (LB)-algebras of entire functions on Banach spaces. Journal of Mathematical Analysis and Applications, 387(2), 604-617. doi:10.1016/j.jmaa.2011.09.022 es_ES
dc.description.references Carando, D., García, D., Maestre, M., & Sevilla-Peris, P. (2009). A Riemann manifold structure of the spectra of weighted algebras of holomorphic functions. Topology, 48(2-4), 54-65. doi:10.1016/j.top.2009.11.003 es_ES
dc.description.references Carando, D., & Sevilla-Peris, P. (2008). Spectra of weighted algebras of holomorphic functions. Mathematische Zeitschrift, 263(4), 887-902. doi:10.1007/s00209-008-0444-0 es_ES
dc.description.references Davie, A. M., & Gamelin, T. W. (1989). A Theorem on Polynomial-Star Approximation. Proceedings of the American Mathematical Society, 106(2), 351. doi:10.2307/2048812 es_ES
dc.description.references Barroso, J. A., Matos, M. C., & Nachbin, L. (1977). On Holomorphy Versus Linearity in Classifying Locally Convex Spaces. North-Holland Mathematics Studies, 31-74. doi:10.1016/s0304-0208(08)72193-5 es_ES
dc.description.references Lassalle, S., & Zalduendo, I. (2000). To what extent does the dual Banach space E′ determine the polynomials over E? Arkiv för Matematik, 38(2), 343-354. doi:10.1007/bf02384324 es_ES
dc.description.references Carando, D., & Muro, S. (2012). Envelopes of holomorphy and extension of functions of bounded type. Advances in Mathematics, 229(3), 2098-2121. doi:10.1016/j.aim.2011.10.019 es_ES
dc.description.references Boyd, C., & Ryan, R. A. (1998). Bounded weak continuity of homogeneous polynomials at the origin. Archiv der Mathematik, 71(3), 211-218. doi:10.1007/s000130050254 es_ES
dc.description.references Aron, R., & Dimant, V. (2002). Sets of weak sequential continuity for polynomials. Indagationes Mathematicae, 13(3), 287-299. doi:10.1016/s0019-3577(02)80012-x es_ES
dc.description.references GROSSE-ERDMANN, K.-G. (2004). A weak criterion for vector-valued holomorphy. Mathematical Proceedings of the Cambridge Philosophical Society, 136(2), 399-411. doi:10.1017/s0305004103007254 es_ES
dc.description.references Mujica, J. (1991). Linearization of Bounded Holomorphic Mappings on Banach Spaces. Transactions of the American Mathematical Society, 324(2), 867. doi:10.2307/2001745 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem