dc.contributor.author |
Corral Martínez, Patricia
|
es_ES |
dc.contributor.author |
Nuez Viñals, Fernando
|
es_ES |
dc.contributor.author |
Seguí-Simarro, Jose M.
|
es_ES |
dc.date.accessioned |
2016-04-28T11:39:21Z |
|
dc.date.available |
2016-04-28T11:39:21Z |
|
dc.date.issued |
2011-03 |
|
dc.identifier.issn |
0014-2336 |
|
dc.identifier.uri |
http://hdl.handle.net/10251/63106 |
|
dc.description.abstract |
In plant breeding, androgenic doubled haploids represent powerful tools to save time and resources for pure line generation. While in many species efficient protocols are known, in tomato (Solanum lycopersicum), the knowledge on the induction of androgenesis is still very scarce, and little is known about the particularities of this highly recalcitrant species. The only known method capable of yielding haploid/doubled haploid tomato plants is anther culture. However, this method has important limitations, including low efficiency of haploid induction and a low proportion of spontaneously doubled haploids. To understand these limitations better, we have analyzed the process of callus formation in anthers of tomato lines carrying the ms10 35 gene for male-sterility, using light and electron microscopy, flow cytometry and genetic analysis with morphological and molecular markers. Our results demonstrate that haploid, doubled haploid and diploid calli occur in tomato anthers, although at different frequencies. Diploid calli derived either from somatic cells or from the fusion of two genetically different haploid nuclei account for more than 90% of the total of calli produced. Somatic calli are derived from the stubs of connective tissue present in the interlocular septa of anthers. This growth is markedly increased in the ms10 35 mutants, which explains their higher callogenic rates than standard tomato lines. Together, our results reveal serious drawbacks that explain the low efficiency of anther-derived, doubled haploid production in tomato, and stress the need for alternatives towards doubled haploidy. |
es_ES |
dc.description.sponsorship |
We want to acknowledge Drs. Alicia Sifres and Begona Renau for their excellent technical work, as well as the staff of the COMAV greenhouses for their valuable help. Thanks are also due to the editor and the anonymous reviewers for their valuable comments to improve the final version of the paper. This work was supported by grants AGL2006-06678 and AGL2010-17895 from Spanish MICINN to JMSS. |
en_EN |
dc.language |
Inglés |
es_ES |
dc.publisher |
Springer Verlag (Germany) |
es_ES |
dc.relation.ispartof |
Euphytica |
es_ES |
dc.rights |
Reconocimiento - No comercial (by-nc) |
es_ES |
dc.subject |
Androgenesis |
es_ES |
dc.subject |
Anther culture |
es_ES |
dc.subject |
Doubled haploid |
es_ES |
dc.subject |
Male sterility |
es_ES |
dc.subject |
Meiocyte |
es_ES |
dc.subject |
Nuclear fusion |
es_ES |
dc.subject |
Solanum lycopersicum |
es_ES |
dc.subject.classification |
GENETICA |
es_ES |
dc.title |
Genetic, quantitative and microscopic evidence for fusion of haploid nuclei and growth of somatic calli in cultured ms1035 tomato anthers |
es_ES |
dc.type |
Artículo |
es_ES |
dc.identifier.doi |
10.1007/s10681-010-0303-z |
|
dc.relation.projectID |
info:eu-repo/grantAgreement/MEC//AGL2006-06678/ES/OBTENCION DE LINEAS DOBLE HAPLOIDES EN SOLANACEAS DE ELEVADO INTERES AGRONOMICO: ANALISIS DE AGENTES INDUCTORES Y MECANISMOS CELULARES IMPLICADOS EN LA INDUCCION EMBRIOGENICA EN TOMATE Y BERENJENA/ / |
es_ES |
dc.relation.projectID |
info:eu-repo/grantAgreement/MICINN//AGL2010-17895/ES/GENERACION EFICIENTE DE DOBLE HAPLOIDES EN BERENJENA Y PIMIENTO MEDIANTE CULTIVO IN VITRO DE MICROSPORAS AISLADAS. ANALISIS CELULAR Y MOLECULAR DEL DESARROLLO ANDROGENICO/ |
es_ES |
dc.rights.accessRights |
Abierto |
es_ES |
dc.contributor.affiliation |
Universitat Politècnica de València. Instituto Universitario de Conservación y Mejora de la Agrodiversidad Valenciana - Institut Universitari de Conservació i Millora de l'Agrodiversitat Valenciana |
es_ES |
dc.contributor.affiliation |
Universitat Politècnica de València. Departamento de Biotecnología - Departament de Biotecnologia |
es_ES |
dc.description.bibliographicCitation |
Corral Martínez, P.; Nuez Viñals, F.; Seguí-Simarro, JM. (2011). Genetic, quantitative and microscopic evidence for fusion of haploid nuclei and growth of somatic calli in cultured ms1035 tomato anthers. Euphytica. 178(2):2151-228. doi:10.1007/s10681-010-0303-z |
es_ES |
dc.description.accrualMethod |
S |
es_ES |
dc.relation.publisherversion |
http://dx.doi.org/ 10.1007/s10681-010-0303-z |
es_ES |
dc.description.upvformatpinicio |
2151 |
es_ES |
dc.description.upvformatpfin |
228 |
es_ES |
dc.type.version |
info:eu-repo/semantics/publishedVersion |
es_ES |
dc.description.volume |
178 |
es_ES |
dc.description.issue |
2 |
es_ES |
dc.relation.senia |
39131 |
es_ES |
dc.description.references |
Areshchenkova T, Ganal MW (1999) Long tomato microsatellites are predominantly associated with centromeric regions. Genome 42:536–544 |
es_ES |
dc.description.references |
Bal U, Abak K (2005) Induction of symmetrical nucleus division and multicellular structures from the isolated microspores of Lycopersicon esculentum Mill. Biotechnol Biotec Eq 19:35–42 |
es_ES |
dc.description.references |
Bal U, Abak K (2007) Haploidy in tomato (Lycopersicon esculentum Mill.): a critical review. Euphytica 158:1–9 |
es_ES |
dc.description.references |
Dao NT, Shamina ZB (1978) Cultivation of isolated tomato anthers. Sov Plant Physiol 25:120–126 |
es_ES |
dc.description.references |
Durand V (1981) Relations entre les gènes marqueurs aa et Wo et le gene de stérilité mâle ms35. In: Philouze J (ed) Genetique et selection de la tomate. Proceedings of the Meetings of the Eucarpia Tomato Working Group, Avignon, France, pp 225–228 |
es_ES |
dc.description.references |
FAOSTAT (2009) http://faostat.fao.org |
es_ES |
dc.description.references |
Ferriol M, Pico B, Nuez F (2003) Genetic diversity of a germplasm collection of Cucurbita pepo using SRAP and AFLP markers. Theor Appl Genet 107:271–282 |
es_ES |
dc.description.references |
Goldberg RB, Beals TP, Sanders PM (1993) Anther development: basic principles and practical applications. Plant Cell 5:1217–1229 |
es_ES |
dc.description.references |
Gresshoff PM, Doy CH (1972) Development and differentiation of haploid Lycopersicon esculentum (tomato). Planta 107:161–170 |
es_ES |
dc.description.references |
Gulshan TMV, Sharma DR (1981) Studies on anther cultures of tomato—Lycopersicon esculentum Mill. Biol Plant 23:414–420 |
es_ES |
dc.description.references |
Ivanova SV, Dolgodvorova LI, Karlov GI, Kuchkovskaja EV (2000) Morphometric and cytogenetic characteristics of haploid tomato plants. Russ J Genetics 36:41–50 |
es_ES |
dc.description.references |
Jaramillo J, Summers WL (1990) Tomato anther callus production—solidifying agent and concentration influence induction of callus. J Am Soc Hortic Sci 115:1047–1050 |
es_ES |
dc.description.references |
Jaramillo J, Summers WL (1991) Dark-light treatments influence induction of tomato anther callus. Hortscience 26:915–916 |
es_ES |
dc.description.references |
Levenko BA, Kunakh VA, Yurkova GN (1977) Studies on callus tissue from anthers. 1. Tomato. Phytomorphology 27:377–383 |
es_ES |
dc.description.references |
Ma YH, Kato K, Masuda M (1999) Efficient callus induction and shoot regeneration by anther culture in male sterile mutants of tomato (Lycopersicon esculentum Mill. cv. First). J Jpn Soc Hortic Sci 68:768–773 |
es_ES |
dc.description.references |
Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15:473–479 |
es_ES |
dc.description.references |
Philouze J (1974) Marker genes for Ms-32 and Ms-35 male-sterility genes in tomato. Annales De L Amelioration Des Plantes 24:77–82 |
es_ES |
dc.description.references |
Rick CM (1948) Genetics and development of nine male-sterile tomato mutants. Hilgardia 18:599–633 |
es_ES |
dc.description.references |
Seguí-Simarro JM (2010) Androgenesis revisited. Bot Rev 76:377–404 |
es_ES |
dc.description.references |
Seguí-Simarro JM, Nuez F (2005) Meiotic metaphase I to telophase II is the most responsive stage of microspore development for induction of androgenesis in tomato (Solanum Lycopersicum). Acta Physiol Plant 27:675–685 |
es_ES |
dc.description.references |
Seguí-Simarro JM, Nuez F (2007) Embryogenesis induction, callogenesis, and plant regeneration by in vitro culture of tomato isolated microspores and whole anthers. J Exp Bot 58:1119–1132 |
es_ES |
dc.description.references |
Seguí-Simarro JM, Nuez F (2008) How microspores transform into haploid embryos: changes associated with embryogenesis induction and microspore-derived embryogenesis. Physiol Plant 134:1–12 |
es_ES |
dc.description.references |
Seguí-Simarro JM, Otegui MS, Austin JR, Staehelin LA (2008) Plant cytokinesis—insights gained from electron tomography studies. In: Verma DPS, Hong Z (eds) Cell division control in plants. Springer, Berlin/Heidelberg, pp 251–287 |
es_ES |
dc.description.references |
Senatore A, Trobacher CP, Greenwood JS (2009) Ricinosomes predict programmed cell death leading to anther dehiscence in tomato. Plant Physiol 149:775–790 |
es_ES |
dc.description.references |
Sharp WR, Dougall DK (1971) Haploid plantlets and callus from immature pollen grains of Nicotiana and Lycopersicon. B Torrey Bot Club 98:219–222 |
es_ES |
dc.description.references |
Sharp WR, Raskin RS, Sommer HW (1972) The use of nurse culture in the development of haploid clones in tomato. Planta 104:357–361 |
es_ES |
dc.description.references |
Shivanna KR, Johri BM (1985) The angiosperm pollen. Structure and function. Wiley Eastern Limited, New Delhi |
es_ES |
dc.description.references |
Shtereva LA, Zagorska NA, Dimitrov BD, Kruleva MM, Oanh HK (1998) Induced androgenesis in tomato (Lycopersicon esculentum Mill). II. Factors affecting induction of androgenesis. Plant Cell Rep 18:312–317 |
es_ES |
dc.description.references |
Smulders MJM, Bredemeijer G, RusKortekaas W, Arens P, Vosman B (1997) Use of short microsatellites from database sequences to generate polymorphisms among Lycopersicon esculentum cultivars and accessions of other Lycopersicon species. Theor Appl Genet 94:264–272 |
es_ES |
dc.description.references |
Summers WL, Jaramillo J, Bailey T (1992) Microspore developmental stage and anther length influence the induction of tomato anther callus. Hortscience 27:838–840 |
es_ES |
dc.description.references |
Touraev A, Pfosser M, Heberle-Bors E (2001) The microspore: a haploid multipurpose cell. Adv Bot Res 35:53–109 |
es_ES |
dc.description.references |
Varghese TM, Gulshan Y (1986) Production of embryoids and calli from isolated microspores of tomato (Lycopersicon esculentum Mill.) in liquid media. Biol Plant 28:126–129 |
es_ES |
dc.description.references |
Zagorska NA, Shtereva A, Dimitrov BD, Kruleva MM (1998) Induced androgenesis in tomato (Lycopersicon esculentum Mill.)—I. Influence of genotype on androgenetic ability. Plant Cell Rep 17:968–973 |
es_ES |
dc.description.references |
Zagorska NA, Shtereva LA, Kruleva MM, Sotirova VG, Baralieva DL, Dimitrov BD (2004) Induced androgenesis in tomato (Lycopersicon esculentum Mill.). III. Characterization of the regenerants. Plant Cell Rep 22:449–456 |
es_ES |
dc.description.references |
Zamir D, Jones RA, Kedar N (1980) Anther culture of male sterile tomato (Lycopersicon esculentum Mill.) mutants. Plant Sci Lett 17:353–361 |
es_ES |