- -

Chaperone-like properties of tobacco plastid thioredoxins f and m

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

  • Estadisticas de Uso

Chaperone-like properties of tobacco plastid thioredoxins f and m

Show full item record

Sanz-Barrio, R.; Fernández-San Millán, A.; Carballeda, J.; Corral Martínez, P.; Seguí-Simarro, JM.; Farran, I. (2012). Chaperone-like properties of tobacco plastid thioredoxins f and m. Journal of Experimental Botany. 63(1):365-379. https://doi.org/10.1093/jxb/err282

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/63108

Files in this item

Item Metadata

Title: Chaperone-like properties of tobacco plastid thioredoxins f and m
Author: Sanz-Barrio, R. Fernández-San Millán, A. Carballeda, J. Corral Martínez, Patricia Seguí-Simarro, Jose M. Farran, I.
UPV Unit: Universitat Politècnica de València. Instituto Universitario de Conservación y Mejora de la Agrodiversidad Valenciana - Institut Universitari de Conservació i Millora de l'Agrodiversitat Valenciana
Universitat Politècnica de València. Departamento de Biotecnología - Departament de Biotecnologia
Issued date:
Abstract:
Thioredoxins (Trxs) are ubiquitous disulphide reductases that play important roles in the redox regulation of many cellular processes. However, some redox-independent functions, such as chaperone activity, have also been ...[+]
Subjects: Chaperone , Folding , Oligomerization , Plastid , Thioredoxin , Tobacco , Complementary DNA , Primer DNA , Amino acid sequence , Article , Chemical structure , Genetics , Molecular genetics , Nucleotide sequence , Physiology , Polymerase chain reaction , Sequence homology , Base Sequence , Chloroplast Thioredoxins , DNA Primers , DNA, Complementary , Models, Molecular , Molecular Chaperones , Molecular Sequence Data , Plastids , Sequence Homology, Amino Acid , Nicotiana tabacum
Copyrigths: Reconocimiento - No comercial (by-nc)
Source:
Journal of Experimental Botany. (issn: 0022-0957 )
DOI: 10.1093/jxb/err282
Publisher:
Oxford University Press (OUP): Policy B - Oxford Open Option A
Publisher version: http://dx.doi.org/10.1093/jxb/err282
Project ID:
info:eu-repo/grantAgreement/Gobierno de Navarra//IIM10865.RI1/
Thanks:
The authors appreciate the assistance of Dr Santiago Mora (Instituto Leloir, Argentine) for his collaboration in the first steps of Trxs cDNA isolation. We gratefully acknowledge the provision of the FBPase enzyme by the ...[+]
Type: Artículo

References

Aguado-Llera, D., Martínez-Gómez, A. I., Prieto, J., Marenchino, M., Traverso, J. A., Gómez, J., … Neira, J. L. (2011). The Conformational Stability and Biophysical Properties of the Eukaryotic Thioredoxins of Pisum Sativum Are Not Family-Conserved. PLoS ONE, 6(2), e17068. doi:10.1371/journal.pone.0017068

Akhtar, M. W., Srinivas, V., Raman, B., Ramakrishna, T., Inobe, T., Maki, K., … Rao, C. M. (2004). Oligomeric Hsp33 with Enhanced Chaperone Activity. Journal of Biological Chemistry, 279(53), 55760-55769. doi:10.1074/jbc.m406333200

Andersen, J. F., Sanders, D. A. R., Gasdaska, J. R., Weichsel, A., Powis, G., & Montfort, W. R. (1997). Human Thioredoxin Homodimers:  Regulation by pH, Role of Aspartate 60, and Crystal Structure of the Aspartate 60 → Asparagine Mutant†,‡. Biochemistry, 36(46), 13979-13988. doi:10.1021/bi971004s [+]
Aguado-Llera, D., Martínez-Gómez, A. I., Prieto, J., Marenchino, M., Traverso, J. A., Gómez, J., … Neira, J. L. (2011). The Conformational Stability and Biophysical Properties of the Eukaryotic Thioredoxins of Pisum Sativum Are Not Family-Conserved. PLoS ONE, 6(2), e17068. doi:10.1371/journal.pone.0017068

Akhtar, M. W., Srinivas, V., Raman, B., Ramakrishna, T., Inobe, T., Maki, K., … Rao, C. M. (2004). Oligomeric Hsp33 with Enhanced Chaperone Activity. Journal of Biological Chemistry, 279(53), 55760-55769. doi:10.1074/jbc.m406333200

Andersen, J. F., Sanders, D. A. R., Gasdaska, J. R., Weichsel, A., Powis, G., & Montfort, W. R. (1997). Human Thioredoxin Homodimers:  Regulation by pH, Role of Aspartate 60, and Crystal Structure of the Aspartate 60 → Asparagine Mutant†,‡. Biochemistry, 36(46), 13979-13988. doi:10.1021/bi971004s

Arnold, K., Bordoli, L., Kopp, J., & Schwede, T. (2005). The SWISS-MODEL workspace: a web-based environment for protein structure homology modelling. Bioinformatics, 22(2), 195-201. doi:10.1093/bioinformatics/bti770

Arsova, B., Hoja, U., Wimmelbacher, M., Greiner, E., Üstün, Ş., Melzer, M., … Börnke, F. (2010). Plastidial Thioredoxin z Interacts with Two Fructokinase-Like Proteins in a Thiol-Dependent Manner: Evidence for an Essential Role in Chloroplast Development in Arabidopsis and Nicotiana benthamiana. The Plant Cell, 22(5), 1498-1515. doi:10.1105/tpc.109.071001

Balmer, Y., Koller, A., del Val, G., Manieri, W., Schurmann, P., & Buchanan, B. B. (2002). Proteomics gives insight into the regulatory function of chloroplast thioredoxins. Proceedings of the National Academy of Sciences, 100(1), 370-375. doi:10.1073/pnas.232703799

Balmer, Y., Vensel, W. H., Cai, N., Manieri, W., Schurmann, P., Hurkman, W. J., & Buchanan, B. B. (2006). A complete ferredoxin/thioredoxin system regulates fundamental processes in amyloplasts. Proceedings of the National Academy of Sciences, 103(8), 2988-2993. doi:10.1073/pnas.0511040103

Barajas-López, J. de D., Serrato, A. J., Cazalis, R., Meyer, Y., Chueca, A., Reichheld, J. P., & Sahrawy, M. (2010). Circadian regulation of chloroplastic f and m thioredoxins through control of the CCA1 transcription factor. Journal of Experimental Botany, 62(6), 2039-2051. doi:10.1093/jxb/erq394

De Dios Barajas-López, J., Serrato, A. J., Olmedilla, A., Chueca, A., & Sahrawy, M. (2007). Localization in Roots and Flowers of Pea Chloroplastic Thioredoxin f and Thioredoxin m Proteins Reveals New Roles in Nonphotosynthetic Organs. Plant Physiology, 145(3), 946-960. doi:10.1104/pp.107.105593

Barranco-Medina, S., Krell, T., Bernier-Villamor, L., Sevilla, F., Lazaro, J.-J., & Dietz, K.-J. (2008). Hexameric oligomerization of mitochondrial peroxiredoxin PrxIIF and formation of an ultrahigh affinity complex with its electron donor thioredoxin Trx-o. Journal of Experimental Botany, 59(12), 3259-3269. doi:10.1093/jxb/ern177

Benitez-Alfonso, Y., Cilia, M., Roman, A. S., Thomas, C., Maule, A., Hearn, S., & Jackson, D. (2009). Control of Arabidopsis meristem development by thioredoxin-dependent regulation of intercellular transport. Proceedings of the National Academy of Sciences, 106(9), 3615-3620. doi:10.1073/pnas.0808717106

Berndt, C., Lillig, C. H., & Holmgren, A. (2008). Thioredoxins and glutaredoxins as facilitators of protein folding. Biochimica et Biophysica Acta (BBA) - Molecular Cell Research, 1783(4), 641-650. doi:10.1016/j.bbamcr.2008.02.003

Bock, R., & Warzecha, H. (2010). Solar-powered factories for new vaccines and antibiotics. Trends in Biotechnology, 28(5), 246-252. doi:10.1016/j.tibtech.2010.01.006

Boston, R. S., Viitanen, P. V., & Vierling, E. (1996). Molecular chaperones and protein folding in plants. Plant Molecular Biology, 32(1-2), 191-222. doi:10.1007/bf00039383

Buchanan, B. B. (1980). Role of Light in the Regulation of Chloroplast Enzymes. Annual Review of Plant Physiology, 31(1), 341-374. doi:10.1146/annurev.pp.31.060180.002013

Capitani, G., & Schürmann, P. (2004). On the Quaternary Assembly of Spinach Chloroplast Thioredoxin m. Photosynthesis Research, 79(3), 281-285. doi:10.1023/b:pres.0000017197.03467.81

Chebotareva, N. A., Kurganov, B. I., & Livanova, N. B. (2004). Biochemical effects of molecular crowding. Biochemistry (Moscow), 69(11), 1239-1251. doi:10.1007/s10541-005-0070-y

Cheng, G., Basha, E., Wysocki, V. H., & Vierling, E. (2008). Insights into Small Heat Shock Protein and Substrate Structure during Chaperone Action Derived from Hydrogen/Deuterium Exchange and Mass Spectrometry. Journal of Biological Chemistry, 283(39), 26634-26642. doi:10.1074/jbc.m802946200

Chibani, K., Wingsle, G., Jacquot, J.-P., Gelhaye, E., & Rouhier, N. (2009). Comparative Genomic Study of the Thioredoxin Family in Photosynthetic Organisms with Emphasis on Populus trichocarpa. Molecular Plant, 2(2), 308-322. doi:10.1093/mp/ssn076

Collin, V., Lamkemeyer, P., Miginiac-Maslow, M., Hirasawa, M., Knaff, D. B., Dietz, K.-J., & Issakidis-Bourguet, E. (2004). Characterization of Plastidial Thioredoxins from Arabidopsis Belonging to the New y-Type. Plant Physiology, 136(4), 4088-4095. doi:10.1104/pp.104.052233

Daniell, H., Singh, N. D., Mason, H., & Streatfield, S. J. (2009). Plant-made vaccine antigens and biopharmaceuticals. Trends in Plant Science, 14(12), 669-679. doi:10.1016/j.tplants.2009.09.009

Del Val, G., Maurer, F., Stutz, E., & Schürmann, P. (1999). Modification of the reactivity of spinach chloroplast thioredoxin f by site-directed mutagenesis. Plant Science, 149(2), 183-190. doi:10.1016/s0168-9452(99)00168-5

Ellis, R. J. (2001). Macromolecular crowding: an important but neglected aspect of the intracellular environment. Current Opinion in Structural Biology, 11(1), 114-119. doi:10.1016/s0959-440x(00)00172-x

Geigenberger, P., Kolbe, A., & Tiessen, A. (2005). Redox regulation of carbon storage and partitioning in response to light and sugars. Journal of Experimental Botany, 56(416), 1469-1479. doi:10.1093/jxb/eri178

Gronenborn, A. M., Clore, G. M., Louis, J. M., & Wingfield, P. T. (2008). Is human thioredoxin monomeric or dimeric? Protein Science, 8(2), 426-429. doi:10.1110/ps.8.2.426

Holmgren, A. (1968). Thioredoxin. 6. The Amino Acid Sequence of the Protein from Escherichia coli B. European Journal of Biochemistry, 6(4), 475-484. doi:10.1111/j.1432-1033.1968.tb00470.x

Holmgren, A. (1995). Thioredoxin structure and mechanism: conformational changes on oxidation of the active-site sulfhydryls to a disulfide. Structure, 3(3), 239-243. doi:10.1016/s0969-2126(01)00153-8

Issakidis-Bourguet, E., Mouaheb, N., Meyer, Y., & Miginiac-Maslow, M. (2008). Heterologous complementation of yeast reveals a new putative function for chloroplast m-type thioredoxin. The Plant Journal, 25(2), 127-135. doi:10.1046/j.0960-7412.2000.00943.x

Jang, H. H., Lee, K. O., Chi, Y. H., Jung, B. G., Park, S. K., Park, J. H., … Lee, S. Y. (2004). Two Enzymes in One. Cell, 117(5), 625-635. doi:10.1016/j.cell.2004.05.002

Jeng, M.-F., Campbell, A. P., Begley, T., Holmgren, A., Case, D. A., Wright, P. E., & Dyson, H. J. (1994). High-resolution solution structures of oxidized and reduced Escherichia coli thioredoxin. Structure, 2(9), 853-868. doi:10.1016/s0969-2126(94)00086-7

KERN, R., MALKI, A., HOLMGREN, A., & RICHARME, G. (2003). Chaperone properties of Escherichia coli thioredoxin and thioredoxin reductase. Biochemical Journal, 371(3), 965-972. doi:10.1042/bj20030093

Kiefer, F., Arnold, K., Kunzli, M., Bordoli, L., & Schwede, T. (2009). The SWISS-MODEL Repository and associated resources. Nucleic Acids Research, 37(Database), D387-D392. doi:10.1093/nar/gkn750

Kim, S. Y., Jang, H. H., Lee, J. R., Sung, N. R., Lee, H. B., Lee, D. H., … Lee, S. Y. (2009). Oligomerization and chaperone activity of a plant 2-Cys peroxiredoxin in response to oxidative stress. Plant Science, 177(3), 227-232. doi:10.1016/j.plantsci.2009.05.010

Kthiri, F., Le, H.-T., Tagourti, J., Kern, R., Malki, A., Caldas, T., … Richarme, G. (2008). The thioredoxin homolog YbbN functions as a chaperone rather than as an oxidoreductase. Biochemical and Biophysical Research Communications, 374(4), 668-672. doi:10.1016/j.bbrc.2008.07.080

LaVallie, E. R., Lu, Z., Diblasio-Smith, E. A., Collins-Racie, L. A., & McCoy, J. M. (2000). [21] Thioredoxin as a fusion partner for production of soluble recombinant proteins in Escherichia coli. Applications of Chimeric Genes and Hybrid Proteins Part A: Gene Expression and Protein Purification, 322-340. doi:10.1016/s0076-6879(00)26063-1

Lee, J. R., Lee, S. S., Jang, H. H., Lee, Y. M., Park, J. H., Park, S.-C., … Lee, S. Y. (2009). Heat-shock dependent oligomeric status alters the function of a plant-specific thioredoxin-like protein, AtTDX. Proceedings of the National Academy of Sciences, 106(14), 5978-5983. doi:10.1073/pnas.0811231106

Lemaire, S. D., Michelet, L., Zaffagnini, M., Massot, V., & Issakidis-Bourguet, E. (2007). Thioredoxins in chloroplasts. Current Genetics, 51(6), 343-365. doi:10.1007/s00294-007-0128-z

Lennon, B. W. (2000). Twists in Catalysis: Alternating Conformations of Escherichia coli Thioredoxin Reductase. Science, 289(5482), 1190-1194. doi:10.1126/science.289.5482.1190

Livak, K. J., & Schmittgen, T. D. (2001). Analysis of Relative Gene Expression Data Using Real-Time Quantitative PCR and the 2−ΔΔCT Method. Methods, 25(4), 402-408. doi:10.1006/meth.2001.1262

Maeda, K., Hägglund, P., Finnie, C., Svensson, B., & Henriksen, A. (2008). Crystal structures of barley thioredoxin h isoforms HvTrxh1 and HvTrxh2 reveal features involved in protein recognition and possibly in discriminating the isoform specificity. Protein Science, 17(6), 1015-1024. doi:10.1110/ps.083460308

Marchand, C. H., Vanacker, H., Collin, V., Issakidis-Bourguet, E., Maréchal, P. L., & Decottignies, P. (2010). Thioredoxin targets in Arabidopsis roots. PROTEOMICS, 10(13), 2418-2428. doi:10.1002/pmic.200900835

Mark, D. F., & Richardson, C. C. (1976). Escherichia coli thioredoxin: a subunit of bacteriophage T7 DNA polymerase. Proceedings of the National Academy of Sciences, 73(3), 780-784. doi:10.1073/pnas.73.3.780

Marri, L., Zaffagnini, M., Collin, V., Issakidis-Bourguet, E., Lemaire, S. D., Pupillo, P., … Trost, P. (2009). Prompt and Easy Activation by Specific Thioredoxins of Calvin Cycle Enzymes of Arabidopsis thaliana Associated in the GAPDH/CP12/PRK Supramolecular Complex. Molecular Plant, 2(2), 259-269. doi:10.1093/mp/ssn061

Meyer, Y., Reichheld, J. P., & Vignols, F. (2005). Thioredoxins inArabidopsis and other plants. Photosynthesis Research, 86(3), 419-433. doi:10.1007/s11120-005-5220-y

Michelet, L., Zaffagnini, M., Marchand, C., Collin, V., Decottignies, P., Tsan, P., … Lemaire, S. D. (2005). Glutathionylation of chloroplast thioredoxin f is a redox signaling mechanism in plants. Proceedings of the National Academy of Sciences, 102(45), 16478-16483. doi:10.1073/pnas.0507498102

Miernyk, J. A. (1999). Protein Folding in the Plant Cell. Plant Physiology, 121(3), 695-703. doi:10.1104/pp.121.3.695

Montrichard, F., Alkhalfioui, F., Yano, H., Vensel, W. H., Hurkman, W. J., & Buchanan, B. B. (2009). Thioredoxin targets in plants: The first 30 years. Journal of Proteomics, 72(3), 452-474. doi:10.1016/j.jprot.2008.12.002

Motohashi, K., Kondoh, A., Stumpp, M. T., & Hisabori, T. (2001). Comprehensive survey of proteins targeted by chloroplast thioredoxin. Proceedings of the National Academy of Sciences, 98(20), 11224-11229. doi:10.1073/pnas.191282098

Motohashi, K., Koyama, F., Nakanishi, Y., Ueoka-Nakanishi, H., & Hisabori, T. (2003). Chloroplast Cyclophilin Is a Target Protein of Thioredoxin. Journal of Biological Chemistry, 278(34), 31848-31852. doi:10.1074/jbc.m304258200

Nordstrand, K., Åslund, F., Holmgren, A., Otting, G., & Berndt, K. D. (1999). NMR structure of Escherichia coli glutaredoxin 3-glutathione mixed disulfide complex: implications for the enzymatic mechanism 1 1Edited by P. E. Wright. Journal of Molecular Biology, 286(2), 541-552. doi:10.1006/jmbi.1998.2444

Park, S. K., Jung, Y. J., Lee, J. R., Lee, Y. M., Jang, H. H., Lee, S. S., … Lee, S. Y. (2009). Heat-Shock and Redox-Dependent Functional Switching of an h-Type Arabidopsis Thioredoxin from a Disulfide Reductase to a Molecular Chaperone. Plant Physiology, 150(2), 552-561. doi:10.1104/pp.109.135426

Pérez-Ruiz, J. M., & Cejudo, F. J. (2009). A proposed reaction mechanism for rice NADPH thioredoxin reductase C, an enzyme with protein disulfide reductase activity. FEBS Letters, 583(9), 1399-1402. doi:10.1016/j.febslet.2009.03.067

Pigiet, V. P., & Schuster, B. J. (1986). Thioredoxin-catalyzed refolding of disulfide-containing proteins. Proceedings of the National Academy of Sciences, 83(20), 7643-7647. doi:10.1073/pnas.83.20.7643

Prasad, B. D., Goel, S., & Krishna, P. (2010). In Silico Identification of Carboxylate Clamp Type Tetratricopeptide Repeat Proteins in Arabidopsis and Rice As Putative Co-Chaperones of Hsp90/Hsp70. PLoS ONE, 5(9), e12761. doi:10.1371/journal.pone.0012761

Qin, J., Clore, G. M., Kennedy, W. P., Kuszewski, J., & Gronenborn, A. M. (1996). The solution structure of human thioredoxin complexed with its target from Ref-1 reveals peptide chain reversal. Structure, 4(5), 613-620. doi:10.1016/s0969-2126(96)00065-2

Ren, G., Lin, Z., Tsou, C., & Wang, C. (2003). Effects of Macromolecular Crowding on the Unfolding and the Refolding of d-Glyceraldehyde-3-Phosophospate Dehydrogenase. Journal of Protein Chemistry, 22(5), 431-439. doi:10.1023/b:jopc.0000005458.08802.11

Sahrawy, M., Hecht, V., Lopez-Jaramillo, J., Chueca, A., Chartier, Y., & Meyer, Y. (1996). Intron position as an evolutionary marker of thioredoxins and thioredoxin domains. Journal of Molecular Evolution, 42(4), 422-431. doi:10.1007/bf02498636

Saitoh, M. (1998). Mammalian thioredoxin is a direct inhibitor of apoptosis signal-regulating kinase (ASK) 1. The EMBO Journal, 17(9), 2596-2606. doi:10.1093/emboj/17.9.2596

Sanz-Barrio, R., Millán, A. F.-S., Corral-Martínez, P., Seguí-Simarro, J. M., & Farran, I. (2011). Tobacco plastidial thioredoxins as modulators of recombinant protein production in transgenic chloroplasts. Plant Biotechnology Journal, 9(6), 639-650. doi:10.1111/j.1467-7652.2011.00608.x

Scheibe, R., & Anderson, L. E. (1981). Dark modulation of NADP-dependent malate dehydrogenase and glucose-6-phosphate dehydrogenase in the chloroplast. Biochimica et Biophysica Acta (BBA) - Bioenergetics, 636(1), 58-64. doi:10.1016/0005-2728(81)90075-x

Schürmann, P., & Buchanan, B. B. (2008). The Ferredoxin/Thioredoxin System of Oxygenic Photosynthesis. Antioxidants & Redox Signaling, 10(7), 1235-1274. doi:10.1089/ars.2007.1931

Seguı́-Simarro, J. ., Testillano, P. ., & Risueño, M. . (2003). Hsp70 and Hsp90 change their expression and subcellular localization after microspore embryogenesis induction in Brassica napus L. Journal of Structural Biology, 142(3), 379-391. doi:10.1016/s1047-8477(03)00067-4

Serrato, A. J., Pérez-Ruiz, J. M., Spínola, M. C., & Cejudo, F. J. (2004). A Novel NADPH Thioredoxin Reductase, Localized in the Chloroplast, Which Deficiency Causes Hypersensitivity to Abiotic Stress in Arabidopsis thaliana. Journal of Biological Chemistry, 279(42), 43821-43827. doi:10.1074/jbc.m404696200

SERRATO, A. J., YUBERO-SERRANO, E. M., SANDALIO, L. M., MUÑOZ-BLANCO, J., CHUECA, A., CABALLERO, J. L., & SAHRAWY, M. (2009). cpFBPaseII, a novel redox-independent chloroplastic isoform of fructose-1,6-bisphosphatase. Plant, Cell & Environment, 32(7), 811-827. doi:10.1111/j.1365-3040.2009.01960.x

SOULIE, J.-M., BUC, J., RIVIERE, M., & RICARD, J. (1985). Equilibrium binding of thioredoxin FB to chloroplastic fructose bisphosphatase. Evidence for a thioredoxin site distinct from the active site. European Journal of Biochemistry, 152(3), 565-568. doi:10.1111/j.1432-1033.1985.tb09232.x

Sun, L., Ren, H., Liu, R., Li, B., Wu, T., Sun, F., … Dong, H. (2010). An h-Type Thioredoxin Functions in Tobacco Defense Responses to Two Species of Viruses and an Abiotic Oxidative Stress. Molecular Plant-Microbe Interactions, 23(11), 1470-1485. doi:10.1094/mpmi-01-10-0029

Traverso, J. A., Vignols, F., Cazalis, R., Serrato, A. J., Pulido, P., Sahrawy, M., … Chueca, A. (2008). Immunocytochemical localization of Pisum sativum TRXs f and m in non-photosynthetic tissues. Journal of Experimental Botany, 59(6), 1267-1277. doi:10.1093/jxb/ern037

Weichsel, A., Gasdaska, J. R., Powis, G., & Montfort, W. R. (1996). Crystal structures of reduced, oxidized, and mutated human thioredoxins: evidence for a regulatory homodimer. Structure, 4(6), 735-751. doi:10.1016/s0969-2126(96)00079-2

Yasukawa, T., Kanei-Ishii, C., Maekawa, T., Fujimoto, J., Yamamoto, T., & Ishii, S. (1995). Increase of Solubility of Foreign Proteins in Escherichia coli by Coproduction of the Bacterial Thioredoxin. Journal of Biological Chemistry, 270(43), 25328-25331. doi:10.1074/jbc.270.43.25328

Yuan, S., Duan, H., Liu, C., Liu, X., Liu, T., Tao, H., & Zhang, Z. (2004). The role of thioredoxin and disulfide isomerase in the expression of the snake venom thrombin-like enzyme calobin in Escherichia coli BL21 (DE3). Protein Expression and Purification, 38(1), 51-60. doi:10.1016/j.pep.2004.08.004

Zybailov, B., Rutschow, H., Friso, G., Rudella, A., Emanuelsson, O., Sun, Q., & van Wijk, K. J. (2008). Sorting Signals, N-Terminal Modifications and Abundance of the Chloroplast Proteome. PLoS ONE, 3(4), e1994. doi:10.1371/journal.pone.0001994

[-]

recommendations

 

This item appears in the following Collection(s)

Show full item record