- -

ANTARES constrains a blazar origin of two IceCube PeV neutrino events

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

ANTARES constrains a blazar origin of two IceCube PeV neutrino events

Show simple item record

Files in this item

dc.contributor.author Adrián Martínez, Silvia es_ES
dc.contributor.author Albert, A. es_ES
dc.contributor.author André, M. es_ES
dc.contributor.author Anton, G. es_ES
dc.contributor.author Ardid Ramírez, Miguel es_ES
dc.contributor.author Aubert, J.J. es_ES
dc.contributor.author Baret, B. es_ES
dc.contributor.author Barrios, J. es_ES
dc.contributor.author Basa, S. es_ES
dc.contributor.author Bertin, V. es_ES
dc.contributor.author Biagi, S. es_ES
dc.contributor.author Bogazzi, C. es_ES
dc.contributor.author Bou Cabo, Manuel es_ES
dc.contributor.author Herrero Debón, Alicia es_ES
dc.contributor.author Martínez Mora, Juan Antonio es_ES
dc.date.accessioned 2016-04-29T11:26:45Z
dc.date.available 2016-04-29T11:26:45Z
dc.date.issued 2015-04
dc.identifier.issn 0004-6361
dc.identifier.uri http://hdl.handle.net/10251/63169
dc.description.abstract Abstract Context. The source(s) of the neutrino excess reported by the IceCube Collaboration is unknown. The TANAMI Collaboration recently reported on the multiwavelength emission of six bright, variable blazars which are positionally coincident with two of the most energetic IceCube events. Objects like these are prime candidates to be the source of the highest-energy cosmic rays, and thus of associated neutrino emission. Aims. We present an analysis of neutrino emission from the six blazars using observations with the ANTARES neutrino telescope. Methods. The standard methods of the ANTARES candidate list search are applied to six years of data to search for an excess of muons and hence their neutrino progenitors from the directions of the six blazars described by the TANAMI Collaboration, and which are possibly associated with two IceCube events. Monte Carlo simulations of the detector response to both signal and background particle fluxes are used to estimate the sensitivity of this analysis for different possible source neutrino spectra. A maximum-likelihood approach, using the reconstructed energies and arrival directions of through-going muons, is used to identify events with properties consistent with a blazar origin. Results. Both blazars predicted to be the most neutrino-bright in the TANAMI sample (1653-329 and 1714-336) have a signal flux fitted by the likelihood analysis corresponding to approximately one event. This observation is consistent with the blazar-origin hypothesis of the IceCube event IC 14 for a broad range of blazar spectra, although an atmospheric origin cannot be excluded. No ANTARES events are observed from any of the other four blazars, including the three associated with IceCube event IC20. This excludes at a 90% confidence level the possibility that this event was produced by these blazars unless the neutrino spectrum is flatter than -2.4. es_ES
dc.description.sponsorship The authors would like to thank A. Kappes for helpful discussions regarding the IceCube analysis. The ANTARES authors acknowledge the financial support of the funding agencies: Centre National de la Recherche Scientifique (CNRS), Commissariat a l'enegie atomique et aux energies alternatives (CEA), Commission Europeenne (FEDER fund and Marie Curie Program), Region Alsace (contrat CPER), Region Provence-Alpes-Cote d'Azur, Departement du Var and Ville de La Seyne-sur-Mer, France; Bundesministerium fur Bildung und Forschung (BMBF), Germany; Istituto Nazionale di Fisica Nucleare (INFN), Italy; Stichting voor Fundamenteel Onderzoek der Materie (FOM), Nederlandse organisatie voor Wetenschappelijk Onderzoek (NWO), the Netherlands; Council of the President of the Russian Federation for young scientists and leading scientific schools supporting grants, Russia; National Authority for Scientific Research (ANCS), Romania; Ministerio de Ciencia e Innovacion (MICINN), Prometeo of Generalitat Valenciana and MultiDark, Spain; Agence de l'Oriental and CNRST, Morocco. We also acknowledge the technical support of Ifremer, AIM and Foselev Marine for the sea operation and the CC-IN2P3 for the computing facilities. The TANAMI authors acknowledge support and partial funding by the Deutsche Forschungsgemeinschaft grant WI 1860-10/1 (TANAMI) and GRK 1147, Deutsches Zentrum fur Luft- und Raumfahrt grant 50 OR1311/50 OR1303/50 OR1401, the Spanish MINECO project AYA2012-38491-C02-01, the Generalitat Valenciana project PROMETEOII/2014/057, the COST MP0905 action "Black Holes in a Violent Universe" and the Helmholtz Alliance for Astroparticle Physics (HAP). en_EN
dc.language Inglés es_ES
dc.publisher EDP Sciences es_ES
dc.relation Centre National de la Recherche Scientifique (CNRS) es_ES
dc.relation Commissariat a l'enegie atomique et aux energies alternatives (CEA) es_ES
dc.relation Commission Europeenne (FEDER fund) es_ES
dc.relation Commission Europeenne (Marie Curie Program) es_ES
dc.relation Region Alsace (contrat CPER) es_ES
dc.relation Region Provence-Alpes-Cote d'Azur es_ES
dc.relation Departement du Var and Ville de La Seyne-sur-Mer, France es_ES
dc.relation Bundesministerium fur Bildung und Forschung (BMBF), Germany es_ES
dc.relation Istituto Nazionale di Fisica Nucleare (INFN), Italy es_ES
dc.relation Stichting voor Fundamenteel Onderzoek der Materie (FOM), the Netherlands es_ES
dc.relation Nederlandse organisatie voor Wetenschappelijk Onderzoek (NWO) es_ES
dc.relation Council of the President of the Russian Federation for young scientists and leading scientific schools supporting grants, Russia es_ES
dc.relation National Authority for Scientific Research (ANCS), Romania es_ES
dc.relation Ministerio de Ciencia e Innovacion (MICINN), Prometeo of Generalitat Valenciana and MultiDark, Spain es_ES
dc.relation Deutsche Forschungsgemeinschaft WI 1860-10/1 GRK 1147 es_ES
dc.relation Deutsches Zentrum fur Luft- und Raumfahrt 50 OR1311/50 OR1303/50 OR1401 es_ES
dc.relation Spanish MINECO project AYA2012-38491-C02-01 es_ES
dc.relation Generalitat Valenciana project PROMETEOII/2014/057 es_ES
dc.relation COST action "Black Holes in a Violent Universe" MP0905 es_ES
dc.relation Helmholtz Alliance for Astroparticle Physics (HAP) es_ES
dc.relation.ispartof Astronomy and Astrophysics es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Neutrinos es_ES
dc.subject Galaxies active es_ES
dc.subject Quasars general es_ES
dc.subject.classification MATEMATICA APLICADA es_ES
dc.subject.classification FISICA APLICADA es_ES
dc.title ANTARES constrains a blazar origin of two IceCube PeV neutrino events es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1051/0004-6361/201525670
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto de Investigación para la Gestión Integral de Zonas Costeras - Institut d'Investigació per a la Gestió Integral de Zones Costaneres es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Física Aplicada - Departament de Física Aplicada es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada es_ES
dc.description.bibliographicCitation Adrián Martínez, S.; Albert, A.; André, M.; Anton, G.; Ardid Ramírez, M.; Aubert, J.; Baret, B.... (2015). ANTARES constrains a blazar origin of two IceCube PeV neutrino events. Astronomy and Astrophysics. 576:1-6. https://doi.org/10.1051/0004-6361/201525670 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/10.1051/0004-6361/201525670 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 6 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 576 es_ES
dc.relation.senia 291404 es_ES
dc.identifier.eissn 1432-0746
dc.description.references Aartsen, M. G., Abbasi, R., Abdou, Y., Ackermann, M., Adams, J., Aguilar, J. A., … Bai, X. (2013). First Observation of PeV-Energy Neutrinos with IceCube. Physical Review Letters, 111(2). doi:10.1103/physrevlett.111.021103 es_ES
dc.description.references Aartsen, M. G., Ackermann, M., Adams, J., Aguilar, J. A., Ahlers, M., Ahrens, M., … Arlen, T. C. (2014). Observation of High-Energy Astrophysical Neutrinos in Three Years of IceCube Data. Physical Review Letters, 113(10). doi:10.1103/physrevlett.113.101101 es_ES
dc.description.references Adrián-Martínez, S., Al Samarai, I., Albert, A., André, M., Anghinolfi, M., Anton, G., … Aubert, J.-J. (2012). SEARCH FOR COSMIC NEUTRINO POINT SOURCES WITH FOUR YEARS OF DATA FROM THE ANTARES TELESCOPE. The Astrophysical Journal, 760(1), 53. doi:10.1088/0004-637x/760/1/53 es_ES
dc.description.references Adrián-Martínez, S., Albert, A., André, M., Anghinolfi, M., Anton, G., Ardid, M., … Basa, S. (2014). SEARCHES FOR POINT-LIKE AND EXTENDED NEUTRINO SOURCES CLOSE TO THE GALACTIC CENTER USING THE ANTARES NEUTRINO TELESCOPE. The Astrophysical Journal, 786(1), L5. doi:10.1088/2041-8205/786/1/l5 es_ES
dc.description.references Adrián-Martínez, S., Albert, A., André, M., Anton, G., Ardid, M., Aubert, J.-J., … Bertin, V. (2014). Constraining the neutrino emission of gravitationally lensed Flat-Spectrum Radio Quasars with ANTARES data. Journal of Cosmology and Astroparticle Physics, 2014(11), 017-017. doi:10.1088/1475-7516/2014/11/017 es_ES
dc.description.references Ageron, M., Aguilar, J. A., Al Samarai, I., Albert, A., Ameli, F., André, M., … Ardid, M. (2011). ANTARES: The first undersea neutrino telescope. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 656(1), 11-38. doi:10.1016/j.nima.2011.06.103 es_ES
dc.description.references Anchordoqui, L. A. (2015). Neutronβ-decay as the origin of IceCube’s PeV (anti)neutrinos. Physical Review D, 91(2). doi:10.1103/physrevd.91.027301 es_ES
dc.description.references Atoyan, A., & Dermer, C. D. (2001). High-Energy Neutrinos from Photomeson Processes in Blazars. Physical Review Letters, 87(22). doi:10.1103/physrevlett.87.221102 es_ES
dc.description.references Beacom, J. F., Bell, N. F., Hooper, D., Pakvasa, S., & Weiler, T. J. (2003). Measuring flavor ratios of high-energy astrophysical neutrinos. Physical Review D, 68(9). doi:10.1103/physrevd.68.093005 es_ES
dc.description.references Becker Tjus, J., Eichmann, B., Halzen, F., Kheirandish, A., & Saba, S. M. (2014). High-energy neutrinos from radio galaxies. Physical Review D, 89(12). doi:10.1103/physrevd.89.123005 es_ES
dc.description.references Berezinsky, V. S., & Smirnov, A. Y. (1975). Cosmic neutrinos of ultra-high energies and detection possibility. Astrophysics and Space Science, 32(2), 461-482. doi:10.1007/bf00643157 es_ES
dc.description.references Cutri, R. M., Skrutskie, M. F., van Dyk, S., et al. 2003, VizieR Online Data Catalog: II/246 es_ES
dc.description.references Dermer, C. D., Murase, K., & Inoue, Y. (2014). Photopion production in black-hole jets and flat-spectrum radio quasars as PeV neutrino sources. Journal of High Energy Astrophysics, 3-4, 29-40. doi:10.1016/j.jheap.2014.09.001 es_ES
dc.description.references Healey, S. E., Romani, R. W., Cotter, G., Michelson, P. F., Schlafly, E. F., Readhead, A. C. S., … Weintraub, L. C. (2008). CGRaBS: An All‐Sky Survey of Gamma‐Ray Blazar Candidates. The Astrophysical Journal Supplement Series, 175(1), 97-104. doi:10.1086/523302 es_ES
dc.description.references Hillas, A. M. (1984). The Origin of Ultra-High-Energy Cosmic Rays. Annual Review of Astronomy and Astrophysics, 22(1), 425-444. doi:10.1146/annurev.aa.22.090184.002233 es_ES
dc.description.references (2013). Evidence for High-Energy Extraterrestrial Neutrinos at the IceCube Detector. Science, 342(6161), 1242856-1242856. doi:10.1126/science.1242856 es_ES
dc.description.references IceCube Collaboration, Aartsen, M. G., Ackermann, M., et al. 2015, Phys. Rev. Lett., submitted [arXiv:1502.03376] es_ES
dc.description.references Kelner, S. R., Aharonian, F. A., & Bugayov, V. V. (2006). Energy spectra of gamma rays, electrons, and neutrinos produced at proton-proton interactions in the very high energy regime. Physical Review D, 74(3). doi:10.1103/physrevd.74.034018 es_ES
dc.description.references Kistler, M. D., Stanev, T., & Yüksel, H. (2014). Cosmic PeV neutrinos and the sources of ultrahigh energy protons. Physical Review D, 90(12). doi:10.1103/physrevd.90.123006 es_ES
dc.description.references Krauß, F., Kadler, M., Mannheim, K., Schulz, R., Trüstedt, J., Wilms, J., … Tzioumis, A. K. (2014). TANAMI blazars in the IceCube PeV-neutrino fields. Astronomy & Astrophysics, 566, L7. doi:10.1051/0004-6361/201424219 es_ES
dc.description.references Mannheim, K. (1995). High-energy neutrinos from extragalactic jets. Astroparticle Physics, 3(3), 295-302. doi:10.1016/0927-6505(94)00044-4 es_ES
dc.description.references Massaro, E., Giommi, P., Leto, C., Marchegiani, P., Maselli, A., Perri, M., … Sclavi, S. (2008). Roma-BZCAT: a multifrequency catalogue of blazars. Astronomy & Astrophysics, 495(2), 691-696. doi:10.1051/0004-6361:200810161 es_ES
dc.description.references Neyman, J. (1937). Outline of a Theory of Statistical Estimation Based on the Classical Theory of Probability. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 236(767), 333-380. doi:10.1098/rsta.1937.0005 es_ES
dc.description.references Padovani, P., & Resconi, E. (2014). Are both BL Lacs and pulsar wind nebulae the astrophysical counterparts of IceCube neutrino events? Monthly Notices of the Royal Astronomical Society, 443(1), 474-484. doi:10.1093/mnras/stu1166 es_ES
dc.description.references Razzaque, S. (2013). Galactic Center origin of a subset of IceCube neutrino events. Physical Review D, 88(8). doi:10.1103/physrevd.88.081302 es_ES
dc.description.references Szabo, A. P., & Protheroe, R. J. (1994). Implications of particle acceleration in active galactic nuclei for cosmic rays and high energy neutrino astronomy. Astroparticle Physics, 2(4), 375-392. doi:10.1016/0927-6505(94)90027-2 es_ES
dc.description.references Véron-Cetty, M.-P., & Véron, P. (2006). A catalogue of quasars and active nuclei: 12th edition. Astronomy & Astrophysics, 455(2), 773-777. doi:10.1051/0004-6361:20065177 es_ES
dc.description.references Waxman, E., & Bahcall, J. (1998). High energy neutrinos from astrophysical sources: An upper bound. Physical Review D, 59(2). doi:10.1103/physrevd.59.023002 es_ES


This item appears in the following Collection(s)

Show simple item record