- -

Arginine decarboxylase expression, polyamines biosynthesis and reactive oxygen species during organogenic nodule formation in hop

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Arginine decarboxylase expression, polyamines biosynthesis and reactive oxygen species during organogenic nodule formation in hop

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Fortes, A. es_ES
dc.contributor.author Costa, J. es_ES
dc.contributor.author Santos, F. es_ES
dc.contributor.author Seguí-Simarro, Jose M. es_ES
dc.contributor.author Palme, K. es_ES
dc.contributor.author Altabella, T. es_ES
dc.contributor.author Tiburcio, A.F. es_ES
dc.contributor.author Pais, M.A. es_ES
dc.date.accessioned 2016-04-29T12:03:08Z
dc.date.available 2016-04-29T12:03:08Z
dc.date.issued 2011-02
dc.identifier.issn 1559-2316
dc.identifier.uri http://hdl.handle.net/10251/63172
dc.description.abstract Hop (Humulus lupulus L.) is an economically important plant species used in beer production and as a health-promoting medicine. hop internodes develop upon stress treatments organogenic nodules which can be used for genetic transformation and micropropagation.Polyamines are involved in plant development and stress responses. arginine decarboxylase (aDc; ec 4·1.1·19) is a key enzyme involved in the biosynthesis of putrescine in plants. here we show that aDc protein was increasingly expressed at early stages of hop internode culture (12 h). Protein continued accumulating until organogenic nodule formation after 28 days, decreasing thereafter. The same profile was observed for/ADC transcript suggesting transcriptional regulation of ADC gene expression during morphogenesis. The highest transcript and protein levels observed after 28 days of culture were accompanied by a peak in putrescine levels. Reactive oxygen species accumulate in nodular tissues probably due to stress inherent to in vitro conditions and enhanced polyamine catabolism. conjugated polyamines increased during plantlet regeneration from nodules suggesting their involvement in plantlet formation and/or in the control of free polyamine levels.Immunogold labeling revealed that aDc is located in plastids, nucleus and cytoplasm of nodular cells. In vacuolated cells, aDc immunolabelling in plastids doubled the signal of proplastids in meristematic cells. Location of aDc in different subcellular compartments may indicate its role in metabolic pathways taking place in these compartments.Altogether these data suggest that polyamines play an important role in organogenic nodule formation and represent a progress towards understanding the role played by these growth regulators in plant morphogenesis. © 2011 Landes Bioscience. es_ES
dc.language Inglés es_ES
dc.publisher Taylor & Francis es_ES
dc.relation.ispartof Plant Signaling and Behavior es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Arginine decarboxylase es_ES
dc.subject Humulus lupulus es_ES
dc.subject Morphogenesis es_ES
dc.subject Organogenic nodule es_ES
dc.subject Polyamines es_ES
dc.subject Reactive oxygen species es_ES
dc.subject Carboxylyase es_ES
dc.subject Polyamine es_ES
dc.subject Reactive oxygen metabolite es_ES
dc.subject Article es_ES
dc.subject Cell nucleus es_ES
dc.subject Enzymology es_ES
dc.subject Humulus es_ES
dc.subject Metabolism es_ES
dc.subject Oxidative stress es_ES
dc.subject Physiology es_ES
dc.subject Plastid es_ES
dc.subject Carboxy-Lyases es_ES
dc.subject Plastids es_ES
dc.subject.classification GENETICA es_ES
dc.title Arginine decarboxylase expression, polyamines biosynthesis and reactive oxygen species during organogenic nodule formation in hop es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.4161/psb.6.2.14503
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Biotecnología - Departament de Biotecnologia es_ES
dc.description.bibliographicCitation Fortes, A.; Costa, J.; Santos, F.; Seguí-Simarro, JM.; Palme, K.; Altabella, T.; Tiburcio, A.... (2011). Arginine decarboxylase expression, polyamines biosynthesis and reactive oxygen species during organogenic nodule formation in hop. Plant Signaling and Behavior. 6(2):258-269. doi:10.4161/psb.6.2.14503 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://www.tandfonline.com/doi/abs/10.4161/psb.6.2.14503 es_ES
dc.description.upvformatpinicio 258 es_ES
dc.description.upvformatpfin 269 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 6 es_ES
dc.description.issue 2 es_ES
dc.relation.senia 198304 es_ES
dc.identifier.pmid 21415599 en_EN
dc.identifier.pmcid PMC3121987 en_EN
dc.description.references Tiburcio, A. F., Altabella, T., Borrell, A., & Masgrau, C. (1997). Polyamine metabolism and its regulation. Physiologia Plantarum, 100(3), 664-674. doi:10.1111/j.1399-3054.1997.tb03073.x es_ES
dc.description.references Alcázar, R., Marco, F., Cuevas, J. C., Patron, M., Ferrando, A., Carrasco, P., … Altabella, T. (2006). Involvement of polyamines in plant response to abiotic stress. Biotechnology Letters, 28(23), 1867-1876. doi:10.1007/s10529-006-9179-3 es_ES
dc.description.references Vuosku, J., Jokela, A., Läärä, E., Sääskilahti, M., Muilu, R., Sutela, S., … Häggman, H. (2006). Consistency of Polyamine Profiles and Expression of Arginine Decarboxylase in Mitosis during Zygotic Embryogenesis of Scots Pine. Plant Physiology, 142(3), 1027-1038. doi:10.1104/pp.106.083030 es_ES
dc.description.references Thomas*, T., & Thomas, T. J. (2001). Polyamines in cell growth and cell death: molecular mechanisms and therapeutic applications. Cellular and Molecular Life Sciences, 58(2), 244-258. doi:10.1007/pl00000852 es_ES
dc.description.references Kusano, T., Berberich, T., Tateda, C., & Takahashi, Y. (2008). Polyamines: essential factors for growth and survival. Planta, 228(3), 367-381. doi:10.1007/s00425-008-0772-7 es_ES
dc.description.references Cona, A., Rea, G., Angelini, R., Federico, R., & Tavladoraki, P. (2006). Functions of amine oxidases in plant development and defence. Trends in Plant Science, 11(2), 80-88. doi:10.1016/j.tplants.2005.12.009 es_ES
dc.description.references Liu, J.-H. (2006). Polyamine biosynthesis of apple callus under salt stress: importance of the arginine decarboxylase pathway in stress response. Journal of Experimental Botany, 57(11), 2589-2599. doi:10.1093/jxb/erl018 es_ES
dc.description.references Scoccianti, V., Sgarbi, E., Fraternale, D., & Biondi, S. (2000). Organogenesis fromSolanum melongena L. (eggplant) cotyledon expiants is associated with hormone-modulated enhancement of polyamine biosynthesis and conjugation. Protoplasma, 211(1-2), 51-63. doi:10.1007/bf01279899 es_ES
dc.description.references Bouchereau, A., Aziz, A., Larher, F., & Martin-Tanguy, J. (1999). Polyamines and environmental challenges: recent development. Plant Science, 140(2), 103-125. doi:10.1016/s0168-9452(98)00218-0 es_ES
dc.description.references Groppa, M. D., & Benavides, M. P. (2007). Polyamines and abiotic stress: recent advances. Amino Acids, 34(1), 35-45. doi:10.1007/s00726-007-0501-8 es_ES
dc.description.references Pandey, S., Ranade, S. A., Nagar, P. K., & Kumar, N. (2000). Role of polyamines and ethylene as modulators of plant senescence. Journal of Biosciences, 25(3), 291-299. doi:10.1007/bf02703938 es_ES
dc.description.references Tun, N. N., Santa-Catarina, C., Begum, T., Silveira, V., Handro, W., Floh, E. I. S., & Scherer, G. F. E. (2006). Polyamines Induce Rapid Biosynthesis of Nitric Oxide (NO) in Arabidopsis thaliana Seedlings. Plant and Cell Physiology, 47(3), 346-354. doi:10.1093/pcp/pci252 es_ES
dc.description.references Kuehn, G. D., & Phillips, G. C. (2005). Role of Polyamines in Apoptosis and Other Recent Advances in Plant Polyamines. Critical Reviews in Plant Sciences, 24(2), 123-130. doi:10.1080/07352680590953161 es_ES
dc.description.references Moschou, P. N., Sarris, P. F., Skandalis, N., Andriopoulou, A. H., Paschalidis, K. A., Panopoulos, N. J., & Roubelakis-Angelakis, K. A. (2009). Engineered Polyamine Catabolism Preinduces Tolerance of Tobacco to Bacteria and Oomycetes. Plant Physiology, 149(4), 1970-1981. doi:10.1104/pp.108.134932 es_ES
dc.description.references Tadolini, B., & Hakim, G. (1988). Interaction of Polyamines with Phospholipids: Spermine and Ca2+ Competition for Phosphatidylserine Containing Liposomes. Advances in Experimental Medicine and Biology, 481-490. doi:10.1007/978-1-4684-5637-0_42 es_ES
dc.description.references Papadakis, A. K., & Roubelakis-Angelakis, K. A. (2004). Polyamines inhibit NADPH oxidase-mediated superoxide generation and putrescine prevents programmed cell death induced by polyamine oxidase-generated hydrogen peroxide. Planta, 220(6), 826-837. doi:10.1007/s00425-004-1400-9 es_ES
dc.description.references McCown, B. H., Zeldin, E. L., Pinkalla, H. A., & Dedolph, R. R. (1988). Nodule Culture: A Developmental Pathway with High Potential for Regeneration, Automated Micropropagation, and Plant Metabolite Production from Woody Plants. Genetic Manipulation of Woody Plants, 149-166. doi:10.1007/978-1-4613-1661-9_9 es_ES
dc.description.references Van Cleemput, M., Cattoor, K., De Bosscher, K., Haegeman, G., De Keukeleire, D., & Heyerick, A. (2009). Hop (Humulus lupulus)-Derived Bitter Acids as Multipotent Bioactive Compounds. Journal of Natural Products, 72(6), 1220-1230. doi:10.1021/np800740m es_ES
dc.description.references Fortes, A. M., Santos, F., & Pais, M. S. (2010). Organogenic Nodule Formation in Hop: A Tool to Study Morphogenesis in Plants with Biotechnological and Medicinal Applications. Journal of Biomedicine and Biotechnology, 2010, 1-16. doi:10.1155/2010/583691 es_ES
dc.description.references Fortes, A. M., & Pais, M. S. (2000). Organogenesis from internode-derived nodules of Humulus lupulus var. Nugget (Cannabinaceae): histological studies and changes in the starch content. American Journal of Botany, 87(7), 971-979. doi:10.2307/2656996 es_ES
dc.description.references Fortes, A. M., José Coronado, M., Testillano, P. S., Risueño, M. del C., & Pais, M. S. (2004). Expression of Lipoxygenase During Organogenic Nodule Formation from Hop Internodes. Journal of Histochemistry & Cytochemistry, 52(2), 227-241. doi:10.1177/002215540405200211 es_ES
dc.description.references SILVA, M. (2004). Differential expression and cellular localization of ERKs during organogenic nodule formation from internodes of var. Nugget. European Journal of Cell Biology, 83(8), 425-433. doi:10.1078/0171-9335-00397 es_ES
dc.description.references Fortes, A. M., Santos, F., Choi, Y. H., Silva, M. S., Figueiredo, A., Sousa, L., … Pais, M. S. (2008). Organogenic nodule development in hop (Humulus lupulus L.): Transcript and metabolic responses. BMC Genomics, 9(1), 445. doi:10.1186/1471-2164-9-445 es_ES
dc.description.references Gemperlová, L., Eder, J., & Cvikrová, M. (2005). Polyamine metabolism during the growth cycle of tobacco BY-2 cells. Plant Physiology and Biochemistry, 43(4), 375-381. doi:10.1016/j.plaphy.2005.02.012 es_ES
dc.description.references Jubault, M., Hamon, C., Gravot, A., Lariagon, C., Delourme, R., Bouchereau, A., & Manzanares-Dauleux, M. J. (2008). Differential Regulation of Root Arginine Catabolism and Polyamine Metabolism in Clubroot-Susceptible and Partially Resistant Arabidopsis Genotypes. Plant Physiology, 146(4), 2008-2019. doi:10.1104/pp.108.117432 es_ES
dc.description.references Papadakis, A. K., Paschalidis, K. A., & Roubelakis-Angelakis, K. A. (2005). Biosynthesis profile and endogenous titers of polyamines differ in totipotent and recalcitrant plant protoplasts. Physiologia Plantarum, 125(1), 10-20. doi:10.1111/j.1399-3054.2005.00550.x es_ES
dc.description.references Bertoldi, D., Tassoni, A., Martinelli, L., & Bagni, N. (2004). Polyamines and somatic embryogenesis in two Vitis vinifera cultivars. Physiologia Plantarum, 120(4), 657-666. doi:10.1111/j.0031-9317.2004.0282.x es_ES
dc.description.references Pedroso, M. C., Primikirios, N., Roubelakis-Angelakis, K. A., & Pais, M. S. (1997). Free and conjugated polyamines in embryogenic and non-embryogenic leaf regions of camellia leaves before and during direct somatic embryogenesis. Physiologia Plantarum, 101(1), 213-219. doi:10.1111/j.1399-3054.1997.tb01839.x es_ES
dc.description.references Gemperlova, L., Fischerova, L., Cvikrova, M., Mala, J., Vondrakova, Z., Martincova, O., & Vagner, M. (2009). Polyamine profiles and biosynthesis in somatic embryo development and comparison of germinating somatic and zygotic embryos of Norway spruce. Tree Physiology, 29(10), 1287-1298. doi:10.1093/treephys/tpp063 es_ES
dc.description.references Clay, N. K., & Nelson, T. (2005). Arabidopsis thickvein Mutation Affects Vein Thickness and Organ Vascularization, and Resides in a Provascular Cell-Specific Spermine Synthase Involved in Vein Definition and in Polar Auxin Transport. Plant Physiology, 138(2), 767-777. doi:10.1104/pp.104.055756 es_ES
dc.description.references Santos F. Studies of polar auxin transport inHumulus lupulusmorphogenic process and isolation of proteins interacting with PIN1- a putative auxin efflux carrier ofArabidopsis thaliana2006; Science Faculty of Lisbon: University of Lisbon Ph.D., thesis es_ES
dc.description.references Bortolotti, C., Cordeiro, A., Alcazar, R., Borrell, A., Culianez-Macia, F. A., Tiburcio, A. F., & Altabella, T. (2004). Localization of arginine decarboxylase in tobacco plants. Physiologia Plantarum, 120(1), 84-92. doi:10.1111/j.0031-9317.2004.0216.x es_ES
dc.description.references Borrell, A., Culianez-Macia, F. A., Altabella, T., Besford, R. T., Flores, D., & Tiburcio, A. F. (1995). Arginine Decarboxylase Is Localized in Chloroplasts. Plant Physiology, 109(3), 771-776. doi:10.1104/pp.109.3.771 es_ES
dc.description.references Malmberg, R. L., Smith, K. E., Bell, E., & Cellino, M. L. (1992). Arginine Decarboxylase of Oats Is Clipped from a Precursor into Two Polypeptides Found in the Soluble Enzyme. Plant Physiology, 100(1), 146-152. doi:10.1104/pp.100.1.146 es_ES
dc.description.references Schipper, R. G., Romain, N., Otten, A. A., Tan, J., Lange, W. P., & Verhofstad, A. A. J. (1999). Immunocytochemical Detection of Ornithine Decarboxylase. Journal of Histochemistry & Cytochemistry, 47(11), 1395-1404. doi:10.1177/002215549904701106 es_ES
dc.description.references Beigbeder, A., Vavadakis, M., Navakoudis, E., & Kotzabasis, K. (1995). Influence of polyamine inhibitors on light-independent and light-dependent chlorophyll biosynthesis and on the photosynthetic rate. Journal of Photochemistry and Photobiology B: Biology, 28(3), 235-242. doi:10.1016/1011-1344(95)07113-g es_ES
dc.description.references Hao, Y.-J. (2005). Expression of arginine decarboxylase and ornithine decarboxylase genes in apple cells and stressed shoots. Journal of Experimental Botany, 56(414), 1105-1115. doi:10.1093/jxb/eri102 es_ES
dc.description.references Cvikrová, M., Malá, J., Hrubcová, M., Eder, J., Zoń, J., & Macháčková, I. (2003). Effect of inhibition of biosynthesis of phenylpropanoids on sessile oak somatic embryogenesis. Plant Physiology and Biochemistry, 41(3), 251-259. doi:10.1016/s0981-9428(03)00016-0 es_ES
dc.description.references Biondi, S., Fornalé, S., Oksman-Caldentey, K. M., Eeva, M., Agostani, S., & Bagni, N. (2000). Jasmonates induce over-accumulation of methylputrescine and conjugated polyamines in Hyoscyamus muticus L. root cultures. Plant Cell Reports, 19(7), 691-697. doi:10.1007/s002999900178 es_ES
dc.description.references Fortes, A. M., Miersch, O., Lange, P. R., Malhó, R., Testillano, P. S., Risueño, M. del C., … Pais, M. S. (2005). Expression of Allene Oxide Cyclase and Accumulation of Jasmonates during Organogenic Nodule Formation from Hop (Humulus lupulus var. Nugget) Internodes. Plant and Cell Physiology, 46(10), 1713-1723. doi:10.1093/pcp/pci187 es_ES
dc.description.references Thibaud-Nissen, F., Shealy, R. T., Khanna, A., & Vodkin, L. O. (2003). Clustering of Microarray Data Reveals Transcript Patterns Associated with Somatic Embryogenesis in Soybean. Plant Physiology, 132(1), 118-136. doi:10.1104/pp.103.019968 es_ES
dc.description.references Murashige, T., & Skoog, F. (1962). A Revised Medium for Rapid Growth and Bio Assays with Tobacco Tissue Cultures. Physiologia Plantarum, 15(3), 473-497. doi:10.1111/j.1399-3054.1962.tb08052.x es_ES
dc.description.references Doke, N., & Ohashi, Y. (1988). Involvement of an O2− generating system in the induction of necrotic lesions on tobacco leaves infected with tobacco mosaic virus. Physiological and Molecular Plant Pathology, 32(1), 163-175. doi:10.1016/s0885-5765(88)80013-4 es_ES
dc.description.references Seguí-Simarro, J. M., Austin, J. R., White, E. A., & Staehelin, L. A. (2004). Electron Tomographic Analysis of Somatic Cell Plate Formation in Meristematic Cells of Arabidopsis Preserved by High-Pressure Freezing. The Plant Cell, 16(4), 836-856. doi:10.1105/tpc.017749 es_ES
dc.description.references Rerie, W., Whitecross, M., & Higgins, T. V. (1991). Developmental and environmental regulation of pea legumin genes in transgenic tobacco. MGG Molecular & General Genetics, 225(1). doi:10.1007/bf00282653 es_ES
dc.description.references Seguí-Simarro, J. M., & Staehelin, L. A. (2005). Cell cycle-dependent changes in Golgi stacks, vacuoles, clathrin-coated vesicles and multivesicular bodies in meristematic cells of Arabidopsis thaliana: A quantitative and spatial analysis. Planta, 223(2), 223-236. doi:10.1007/s00425-005-0082-2 es_ES
dc.description.references Marcé, M., Brown, D. S., Capell, T., Figueras, X., & Tiburcio, A. F. (1995). Rapid high-performance liquid chromatographic method for the quantitation of polyamines as their dansyl derivatives: application to plant and animal tissues. Journal of Chromatography B: Biomedical Sciences and Applications, 666(2), 329-335. doi:10.1016/0378-4347(94)00586-t es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem