- -

Androgenesis in recalcitrant solanaceous crops

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

Androgenesis in recalcitrant solanaceous crops

Show simple item record

Files in this item

dc.contributor.author Seguí-Simarro, Jose M. es_ES
dc.contributor.author Corral Martínez, Patricia es_ES
dc.contributor.author Parra Vega, Verónica es_ES
dc.contributor.author Gonzalez Garcia, Beatriz es_ES
dc.date.accessioned 2016-04-29T12:11:53Z
dc.date.available 2016-04-29T12:11:53Z
dc.date.issued 2011-05
dc.identifier.issn 0721-7714
dc.identifier.uri http://hdl.handle.net/10251/63173
dc.description.abstract [EN] Tomato, eggplant, and pepper are three solanaceous crops of outstanding importance worldwide. For hybrid seed production in these species, a fast and cheap method to obtain pure (homozygous) lines is a priority. Traditionally, pure lines are produced by classical inbreeding and selection techniques, which are time consuming (several years) and costly. Alternatively, it has become possible to accelerate the production of homozygous lines through a biotechnological approach: the induction of androgenesis to generate doubled haploid (homozygous) plants. This biotechnological in vitro tool reduces the process to only one generation, which implies important time and costs savings. These facts make androgenic doubled haploids the choice in a number of important crops where the methodology is well set up. Unfortunately, recalcitrant solanaceous crops such as tomato, eggplant, and pepper are still far from an efficient and reliable technology to be applied on a routine basis to different genotypes in breeding programs. In eggplant and pepper, only anther cultures are known to work relatively well. Unfortunately, a more efficient and promising technique, the culture of isolated microspores, is not sufficiently developed yet. In tomato, none of these methods is available nowadays. However, recent advances in the knowledge of embryo development are filling the gaps and opening new ways to achieve the final goal of an efficient protocol in these three recalcitrant species. In this review, we outline the state of the art on androgenic induction in tomato, eggplant, and pepper, and postulate new experimental ways in order to overcome current limitations. © 2010 Springer-Verlag. es_ES
dc.description.sponsorship Authors want to express their thanks to Mrs. Nuria Palacios, Dr. Antonio Serrano and Dr. Begona Renau for their excellent technical help. This work was supported by grants AGL2006-06678 and AGL2010-17895 from the Spanish Ministry of Science and Innovation (MICINN) to JMSS.
dc.language Inglés es_ES
dc.publisher Springer Verlag (Germany) es_ES
dc.relation MICINN/AGL2006-06678 es_ES
dc.relation MICINN/AGL2010-17895
dc.relation.ispartof Plant Cell Reports es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Anther culture es_ES
dc.subject Doubled haploid es_ES
dc.subject Eggplant es_ES
dc.subject Microspore culture es_ES
dc.subject Pepper es_ES
dc.subject Tomato es_ES
dc.subject Aubergine es_ES
dc.subject Biological model es_ES
dc.subject Biotechnology es_ES
dc.subject Cytology es_ES
dc.subject Drug effect es_ES
dc.subject Embryo development es_ES
dc.subject Flower es_ES
dc.subject Genetics es_ES
dc.subject Growth, development and aging es_ES
dc.subject Haploidy es_ES
dc.subject Homozygote es_ES
dc.subject Methodology es_ES
dc.subject Plant chromosome es_ES
dc.subject Plant gametogenesis es_ES
dc.subject Ploidy es_ES
dc.subject Pollen es_ES
dc.subject Regeneration es_ES
dc.subject Review es_ES
dc.subject Tissue culture technique es_ES
dc.subject Capsicum es_ES
dc.subject Chromosomes, Plant es_ES
dc.subject Embryonic Development es_ES
dc.subject Flowers es_ES
dc.subject Gametogenesis, Plant es_ES
dc.subject Lycopersicon esculentum es_ES
dc.subject Models, Genetic es_ES
dc.subject Ploidies es_ES
dc.subject Solanum melongena es_ES
dc.subject Tissue Culture Techniques es_ES
dc.subject.classification GENETICA es_ES
dc.title Androgenesis in recalcitrant solanaceous crops es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1007/s00299-010-0984-8
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Biotecnología - Departament de Biotecnologia es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario de Conservación y Mejora de la Agrodiversidad Valenciana - Institut Universitari de Conservació i Millora de l'Agrodiversitat Valenciana es_ES
dc.description.bibliographicCitation Seguí-Simarro, JM.; Corral Martínez, P.; Parra Vega, V.; Gonzalez Garcia, B. (2011). Androgenesis in recalcitrant solanaceous crops. Plant Cell Reports. 30(5):765-778. doi:10.1007/s00299-010-0984-8 es_ES
dc.description.accrualMethod Senia es_ES
dc.relation.publisherversion http://dx.doi.org/10.1007/s00299-010-0984-8 es_ES
dc.description.upvformatpinicio 765 es_ES
dc.description.upvformatpfin 778 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 30 es_ES
dc.description.issue 5 es_ES
dc.relation.senia 198308 es_ES
dc.identifier.pmid 21191595
dc.contributor.funder Ministerio de Ciencia e Innovación
dc.relation.references Adkins SW, Kunanuvatchaidach R, Gray SJ, Adkins AL (1993) Effect of ethylene and culture environment on rice callus proliferation. J Exp Bot 44:1829–1835 es_ES
dc.relation.references Azpeitia A, Chan JL, Saenz L, Oropeza C (2003) Effect of 22(S), 23(S)-homobrassinolide on somatic embryogenesis in plumule explants of Cocos nucifera (L.) cultured in vitro. J Hort Sci Biotechnol 78:591–596 es_ES
dc.relation.references Bal U, Abak K (2005) Induction of symmetrical nucleus division and multicellular structures from the isolated microspores of Lycopersicon esculentum Mill. Biotechnol Biotechnol Eq 19:35–42 es_ES
dc.relation.references Bal U, Abak K (2007) Haploidy in tomato (Lycopersicon esculentum Mill.): a critical review. Euphytica 158:1–9 es_ES
dc.relation.references Bal U, Ellialtioglu S, Abak K (2009) Induction of symmetrical nucleus division and multi-nucleate structures in microspores of eggplant (Solanum melongena L.) cultured in vitro. Sci Agric 66:535–539 es_ES
dc.relation.references Belmonte M, Elhiti M, Waldner B, Stasolla C (2010) Depletion of cellular brassinolide decreases embryo production and disrupts the architecture of the apical meristems in Brassica napus microspore-derived embryos. J Exp Bot 61:2779–2794 es_ES
dc.relation.references Belmonte MF, Ambrose SJ, Ross ARS, Abrams SR, Stasolla C (2006) Improved development of microspore-derived embryo cultures of Brassica napus cv Topas following changes in glutathione metabolism. Physiol Plant 127:690–700 es_ES
dc.relation.references Belogradova K, Lewicka I, Heberle-Bors E, Touraev A (2009) An overview of tobacco doubled haploids. In: Touraev A, Forster BP, Jain SM (eds) Advances in haploid production in higher plants. Springer, Dordrecht, pp 75–85 es_ES
dc.relation.references Bhatia P, Ashwath N, Senaratna T, Midmore D (2004) Tissue culture studies of tomato (Lycopersicon esculentum). Plant Cell Tiss Org 78:1–21 es_ES
dc.relation.references Borderies G, le Bechec M, Rossignol M, Lafitte C, Le Deunff E, Beckert M, Dumas C, Matthys-Rochon E (2004) Characterization of proteins secreted during maize microspore culture: arabinogalactan proteins (AGPs) stimulate embryo development. Eur J Cell Biol 83:205–212 es_ES
dc.relation.references Corral-Martínez P, Nuez F, Seguí-Simarro JM (2008) Recent advances in eggplant microspore cultures for production of androgenic doubled haploids. In: Prohens J, Badenes ML (eds) Modern variety breeding for present and future needs UPV Press. Valencia, Spain, pp 104–108 es_ES
dc.relation.references Corral-Martínez P, Nuez F, Seguí-Simarro JM (2010) Genetic, quantitative and microscopic evidence for fusion of haploid nuclei and growth of somatic calli in cultured ms10 35 tomato anthers. Euphytica. doi: 10.1007/s10681-010-0303-z es_ES
dc.relation.references Chen JT, Chang WC (2003) 1-Aminocyclopropane-1-carboxylic acid enhanced direct somatic embryogenesis from Oncidium leaf cultures. Biol Plant 46:455–458 es_ES
dc.relation.references Cheung AY, Wu HM (1999) Arabinogalactan proteins in plant sexual reproduction. Protoplasma 208:87–98 es_ES
dc.relation.references Dao NT, Shamina ZB (1978) Cultivation of isolated tomato anthers. Sov Plant Physiol 25:120–126 es_ES
dc.relation.references Dolcet-Sanjuan R, Claveria E, Huerta A (1997) Androgenesis in Capsicum annuum L—effects of carbohydrate and carbon dioxide enrichment. J Am Soc Hortic Sci 122:468–475 es_ES
dc.relation.references Dumas de Vaulx R, Chambonnet D (1982) Culture in vitro d’anthères d’aubergine (Solanum melongena L.): stimulation de la production de plantes au moyen de traitements à 35ºC associés à de faibles teneurs en substances de croissance. Agronomie 2:983–988 es_ES
dc.relation.references Dumas de Vaulx R, Chambonnet D, Pochard E (1981) Culture in vitro d’anthères de piment (Capsicum annuum L.): amèlioration des taux d’obtenction de plantes chez différents génotypes par des traitments à +35ºC. Agronomie 1:859–864 es_ES
dc.relation.references Dunwell JM (2010) Haploids in flowering plants: origins and exploitation. Plant Biotechnol J 8:377–424 es_ES
dc.relation.references Elhiti M, Tahir M, Gulden RH, Khamiss K, Stasolla C (2010) Modulation of embryo-forming capacity in culture through the expression of Brassica genes involved in the regulation of the shoot apical meristem. J Exp Bot 61:4069–4085 es_ES
dc.relation.references FAOSTAT (2009). http://faostat.fao.org es_ES
dc.relation.references Feher A, Pasternak TP, Dudits D (2003) Transition of somatic plant cells to an embryogenic state. Plant Cell Tiss Org 74:201–228 es_ES
dc.relation.references Foolad MR (2007) Genome mapping and molecular breeding of tomato. Int J Plant Genomics 2007(64358):1–52 es_ES
dc.relation.references Gémes Juhász A, Kristóf Z, Vági P, Lantos C, Pauk J (2009) In vitro anther and isolated microspore culture as tools in sweet and spice pepper breeding. Acta Hort 829:61–64 es_ES
dc.relation.references George L, Narayanaswamy S (1973) Haploid Capsicum through experimental androgenesis. Protoplasma 78:467–470 es_ES
dc.relation.references Guha S, Maheshwari SC (1964) In vitro production of embryos from anthers of Datura. Nature 204:497 es_ES
dc.relation.references Hatanaka T, Sawabe E, Azuma T, Uchida N, Yasuda T (1995) The role of ethylene in somatic embryogenesis from leaf discs of Coffea canephora. Plant Sci 107:199–204 es_ES
dc.relation.references Hays DB, Mandel RM, Pharis RP (2001) Hormones in zygotic and microspore embryos of Brassica napus. Plant Growth Regul 35:47–58 es_ES
dc.relation.references Hays DB, Reid DM, Yeung EC, Pharis RP (2000) Role of ethylene in cotyledon development of microspore-derived embryos of Brassica napus. J Exp Bot 51:1851–1859 es_ES
dc.relation.references Isouard G, Raquin C, Demarly Y (1979) Obtention de plantes haploides et diploides par culture in vitro d’anthères dáubergine (Solanum melongena L.). C R Acad Sci Paris 288:987–989 es_ES
dc.relation.references Kantharajah AS, Golegaonkar PG (2004) Somatic embryogenesis in eggplant. Sci Hort 99:107–117 es_ES
dc.relation.references Kim M, Jang I-C, Kim J-A, Park E-J, Yoon M, Lee Y (2008) Embryogenesis and plant regeneration of hot pepper (Capsicum annuum L.) through isolated microspore culture. Plant Cell Rep 27:425–434 es_ES
dc.relation.references Knapp S, Bohs L, Nee M, Spooner DM (2004) Solanaceae—a model for linking genomics with biodiversity. Comp Funct Genom 5:285–291 es_ES
dc.relation.references Kothari SL, Joshi A, Kachhwaha S, Ochoa-Alejo N (2010) Chilli peppers—a review on tissue culture and transgenesis. Biotechnol Adv 28:35–48 es_ES
dc.relation.references Kristiansen K, Andersen SB (1993) Effects of donor plant, temperature, photoperiod and age on anther culture response of Capsicum annuum L. Euphytica 67:105–109 es_ES
dc.relation.references Kuo JS, Wang YY, Chien NF, Ku SJ, Kung ML, Hsu HC (1973) Investigations on the anther culture in vitro of Nicotiana tabacum L. and Capsicum annuum L. Acta Bot Sin 15:47–52 es_ES
dc.relation.references Letarte J, Simion E, Miner M, Kasha KJ (2006) Arabinogalactans and arabinogalactan-proteins induce embryogenesis in wheat (Triticum aestivum L.) microspore culture. Plant Cell Rep 24:691–698 es_ES
dc.relation.references Malik MR, Wang F, Dirpaul J, Zhou N, Hammerlindl J, Keller W, Abrams SR, Ferrie AMR, Krochko JE (2008) Isolation of an embryogenic line from non-embryogenic Brassica napus cv. Westar through microspore embryogenesis. J Exp Bot 59:2857–2873 es_ES
dc.relation.references Maluszynski M, Kasha KJ, Szarejko I (2003) Published doubled haploid protocols in plant species. In: Maluszynski M, Kasha KJ, Forster BP, Szarejko I (eds) Doubled haploid production in crop plants. A manual. Kluwer, Dordrecht, pp 309–335 es_ES
dc.relation.references Meijer EGM, Brown DCW (1988) Inhibition of somatic embryogenesis in tissue cultures of Medicago sativa by aminoethoxyvinylglycine, aminooxyacetic acid, 2, 4-dinitrophenol and salicylic acid at concentrations which do not inhibit ethylene biosynthesis and growth. J Exp Bot 39:263–270 es_ES
dc.relation.references Miller JC, Tanksley SD (1990) RFLP analysis of phylogenetic relationships and genetic variation in the genus Lycopersicon. Theor Appl Genet 80:437–448 es_ES
dc.relation.references Misra NR, Varghese TM, Maherchandani N, Jain RK (1983) Studies on induction and differentiation of androgenic callus of Solanum melongena L. In: Sen SK, Giles KL (eds) Plant cell culture in crop improvement. Plenum Press, New York, pp 465–468 es_ES
dc.relation.references Mityko J, Andrasfalvy A, Csillery G, Fari M (1995) Anther culture response in different genotypes and F1 hybrids of pepper (Capsicum Annuum L). Plant Breed 114:78–80 es_ES
dc.relation.references Miyoshi K (1996) Callus induction and plantlet formation through culture of isolated microspores of eggplant (Solanum melongena L). Plant Cell Rep 15:391–395 es_ES
dc.relation.references Morrison RA, Koning RE, Evans DA (1986) Anther culture of an interspecific hybrid of Capsicum. J Plant Physiol 126:1–9 es_ES
dc.relation.references Novak FJ (1974) Induction of a haploid callus in anther cultures of Capsicum sp. Z Pflanzenzucht 72:46–54 es_ES
dc.relation.references Nowaczyk P, Kisiala A, Olszewska D (2006) Induced androgenesis of Capsicum frutescens L. Acta Physiol Plant 28:35–39 es_ES
dc.relation.references Paire A, Devaux P, Lafitte C, Dumas C, Matthys-Rochon E (2003) Proteins produced by barley microspores and their derived androgenic structures promote in vitro zygotic maize embryo formation. Plant Cell Tiss Org 73:167–176 es_ES
dc.relation.references Palmer CE, Keller WA (2005) Overview of haploidy. In: Palmer CE, Keller WA, Kasha KJ (eds) Haploids in crop improvement II. Springer, Berlin, pp 3–9 es_ES
dc.relation.references Parra-Vega V, Palacios-Calvo N, Corral-Martínez P, Seguí-Simarro JM (2010) Establishment of isolated microspore cultures in pepper of the California and Lamuyo types. In: Prohens J, Rodríguez-Burruezo A (eds) Advances in genetics and breeding of Capsicum and eggplant UPV Press. Valencia, Spain, pp 411–415 es_ES
dc.relation.references Pickersgill B (1997) Genetic resources and breeding of Capsicum spp. Euphytica 96:129–133 es_ES
dc.relation.references Ptak A, Tahchy A, Wyżgolik G, Henry M, Laurain-Mattar D (2010) Effects of ethylene on somatic embryogenesis and galanthamine content in Leucojum aestivum L. cultures. Plant Cell Tissue Organ Cult 102:61–67 es_ES
dc.relation.references Raina SK, Iyer RD (1973) Differentiation of diploid plants from pollen callus in anther cultures of Solanum melongena L. Z Pflanzenzucht 70:275–280 es_ES
dc.relation.references Ramesar-Fortner NS, Yeung EC (2006) Physiological influences in the development and function of the shoot apical meristem of microspore-derived embryos of Brassica napus ‘Topas’. Can J Bot 84:371–383 es_ES
dc.relation.references Ravi M, Chan SWL (2010) Haploid plants produced by centromere-mediated genome elimination. Nature 464:615–618 es_ES
dc.relation.references Regner F (1996) Anther and microspore culture in Capsicum. In: Jain SM, Sopory SK, Veilleux RE (eds) In vitro haploid production in higher plants. Kluwer Academic, Dordrecht, pp 77–89 es_ES
dc.relation.references Rick CM (1976) Tomato, Lycopersicon esculentum (Solanaceae). In: Simmonds NW (ed) Evolution of crop plants Longman. London, UK, pp 268–273 es_ES
dc.relation.references Rizza F, Mennella G, Collonnier C, Shiachakr D, Kashyap V, Rajam MV, Prestera M, Rotino GL (2002) Androgenic dihaploids from somatic hybrids between Solanum melongena and S. aethiopicum group Gilo as a source of resistance to Fusarium oxysporum f. sp. melongenae. Plant Cell Rep 20:1022–1032 es_ES
dc.relation.references Rokka VM (2009) Potato haploids and breeding. In: Touraev A, Forster BP, Jain SM (eds) Advances in haploid production in higher plants Springer. Dordrecht, The Netherlands, pp 199–208 es_ES
dc.relation.references Rotino GL (1996) Haploidy in eggplant. In: Jain SM, Sopory SK, Veilleux RE (eds) In vitro haploid production in higher plants. Kluwer, Dordrecht, pp 115–141 es_ES
dc.relation.references Rotino GL, Restaino F, Gjomarkaj M, Massimo M, Falavigna A, Schiavi M, Vicini E (1991) Evaluation of genetic variability in embryogenetic and androgenetic lines of eggplant. Acta Hort 300:357–362 es_ES
dc.relation.references Rotino GL, Sihachakr D, Rizza F, Vale G, Tacconi MG, Alberti P, Mennella G, Sabatini E, Toppino L, D’Alessandro A, Acciarri N (2005) Current status in production and utilization of dihaploids from somatic hybrids between eggplant (Solanum melongena L.) and its wild relatives. Acta Physiol Plant 27:723–733 es_ES
dc.relation.references Rudolf K, Bohanec B, Hansen M (1999) Microspore culture of white cabbage, Brassica oleracea var capitata L.: genetic improvement of non-responsive cultivars and effect of genome doubling agents. Plant Breed 118:237–241 es_ES
dc.relation.references Sanguineti MC, Tuberosa R, Conti S (1990) Field evaluation of androgenetic lines of eggplant. Acta Hort 280:177–182 es_ES
dc.relation.references Seguí-Simarro JM (2010) Androgenesis revisited. Bot Rev 76:377–404 es_ES
dc.relation.references Seguí-Simarro JM, Nuez F (2005) Meiotic metaphase I to telophase II is the most responsive stage of microspore development for induction of androgenesis in tomato (Solanum lycopersicum). Acta Physiol Plant 27:675–685 es_ES
dc.relation.references Seguí-Simarro JM, Nuez F (2006) Androgenesis induction from tomato anther cultures: callus characterization. Acta Hort 725:855–861 es_ES
dc.relation.references Seguí-Simarro JM, Nuez F (2007) Embryogenesis induction, callogenesis, and plant regeneration by in vitro culture of tomato isolated microspores and whole anthers. J Exp Bot 58:1119–1132 es_ES
dc.relation.references Shtereva LA, Zagorska NA, Dimitrov BD, Kruleva MM, Oanh HK (1998) Induced androgenesis in tomato (Lycopersicon esculentum Mill). II. Factors affecting induction of androgenesis. Plant Cell Rep 18:312–317 es_ES
dc.relation.references Sibi M, Dumas de Vaulx R, Chambonnet D (1979) Obtention de plantes haploïdes par androgenèse in vitro chez le piment (Capsicum annuum L.). Ann Amélior Plant 29:583–606 es_ES
dc.relation.references Songstad DD, Armstrong CL, Petersen WL (1991) AGNO3 increases type-II callus production from immature embryos of maize inbred B73 and its derivatives. Plant Cell Rep 9:699–702 es_ES
dc.relation.references Srivastava P, Chaturvedi R (2008) In vitro androgenesis in tree species: an update and prospect for further research. Biotechnol Adv 26:482–491 es_ES
dc.relation.references Stasolla C, Belmonte MF, Muhammad T, Mohamed E, Khalil K, Joosen R, Maliepaard C, Sharpe AG, Gjetvaj B, Boutilier K (2008) Buthionine sulfoximine (BSO)-mediated improvement in cultured embryo quality in vitro entails changes in ascorbate metabolism, meristem development and embryo maturation. Planta 228:255–272 es_ES
dc.relation.references Supena EDJ, Muswita W, Suharsono S, Custers JBM (2006a) Evaluation of crucial factors for implementing shed-microspore culture of Indonesian hot pepper (Capsicum annuum L.) cultivars. Sci Hort 107:226–232 es_ES
dc.relation.references Supena EDJ, Suharsono S, Jacobsen E, Custers JBM (2006b) Successful development of a shed-microspore culture protocol for doubled haploid production in Indonesian hot pepper (Capsicum annuum L.). Plant Cell Rep 25:1–10 es_ES
dc.relation.references Tang XC, He YQ, Wang Y, Sun MX (2006) The role of arabinogalactan proteins binding to Yariv reagents in the initiation, cell developmental fate, and maintenance of microspore embryogenesis in Brassica napus L. cv. Topas. J Exp Bot 57:2639–2650 es_ES
dc.relation.references Wang Y-Y, Sun C-S, Wang C-C, Chien N-F (1973) The induction of the pollen plantlets of triticale and Capsicum annuum from anther culture. Sci Sin 16:147–151 es_ES
dc.relation.references Yeung EC, Stasolla C (2001) Somatic embryogenesis—apical meristems and embryo conversion. Korean J Plant Tiss Cult 27:299–307 es_ES
dc.relation.references Zagorska NA, Shtereva A, Dimitrov BD, Kruleva MM (1998) Induced androgenesis in tomato (Lycopersicon esculentum Mill.)—I. Influence of genotype on androgenetic ability. Plant Cell Rep 17:968–973 es_ES
dc.relation.references Zagorska NA, Shtereva LA, Kruleva MM, Sotirova VG, Baralieva DL, Dimitrov BD (2004) Induced androgenesis in tomato (Lycopersicon esculentum Mill.). III. Characterization of the regenerants. Plant Cell Rep 22:449–456 es_ES
dc.relation.references Zamir D, Jones RA, Kedar N (1980) Anther culture of male sterile tomato (Lycopersicon esculentum Mill.) mutants. Plant Sci Lett 17:353–361 es_ES
dc.relation.references Zhong J, Ren YJ, Yu M, Ma TF, Zhang XL, Zhao J (2010) Roles of arabinogalactan proteins in cotyledon formation and cell wall deposition during embryo development of Arabidopsis. Protoplasma 1–13 es_ES


This item appears in the following Collection(s)

Show simple item record