Mostrar el registro sencillo del ítem
dc.contributor.author | Seguí-Simarro, Jose M. | es_ES |
dc.contributor.author | Corral Martínez, Patricia | es_ES |
dc.contributor.author | Parra Vega, Verónica | es_ES |
dc.contributor.author | Gonzalez Garcia, Beatriz | es_ES |
dc.date.accessioned | 2016-04-29T12:11:53Z | |
dc.date.available | 2016-04-29T12:11:53Z | |
dc.date.issued | 2011-05 | |
dc.identifier.issn | 0721-7714 | |
dc.identifier.uri | http://hdl.handle.net/10251/63173 | |
dc.description.abstract | [EN] Tomato, eggplant, and pepper are three solanaceous crops of outstanding importance worldwide. For hybrid seed production in these species, a fast and cheap method to obtain pure (homozygous) lines is a priority. Traditionally, pure lines are produced by classical inbreeding and selection techniques, which are time consuming (several years) and costly. Alternatively, it has become possible to accelerate the production of homozygous lines through a biotechnological approach: the induction of androgenesis to generate doubled haploid (homozygous) plants. This biotechnological in vitro tool reduces the process to only one generation, which implies important time and costs savings. These facts make androgenic doubled haploids the choice in a number of important crops where the methodology is well set up. Unfortunately, recalcitrant solanaceous crops such as tomato, eggplant, and pepper are still far from an efficient and reliable technology to be applied on a routine basis to different genotypes in breeding programs. In eggplant and pepper, only anther cultures are known to work relatively well. Unfortunately, a more efficient and promising technique, the culture of isolated microspores, is not sufficiently developed yet. In tomato, none of these methods is available nowadays. However, recent advances in the knowledge of embryo development are filling the gaps and opening new ways to achieve the final goal of an efficient protocol in these three recalcitrant species. In this review, we outline the state of the art on androgenic induction in tomato, eggplant, and pepper, and postulate new experimental ways in order to overcome current limitations. © 2010 Springer-Verlag. | es_ES |
dc.description.sponsorship | Authors want to express their thanks to Mrs. Nuria Palacios, Dr. Antonio Serrano and Dr. Begona Renau for their excellent technical help. This work was supported by grants AGL2006-06678 and AGL2010-17895 from the Spanish Ministry of Science and Innovation (MICINN) to JMSS. | |
dc.language | Inglés | es_ES |
dc.publisher | Springer Verlag (Germany) | es_ES |
dc.relation.ispartof | Plant Cell Reports | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Anther culture | es_ES |
dc.subject | Doubled haploid | es_ES |
dc.subject | Eggplant | es_ES |
dc.subject | Microspore culture | es_ES |
dc.subject | Pepper | es_ES |
dc.subject | Tomato | es_ES |
dc.subject | Aubergine | es_ES |
dc.subject | Biological model | es_ES |
dc.subject | Biotechnology | es_ES |
dc.subject | Cytology | es_ES |
dc.subject | Drug effect | es_ES |
dc.subject | Embryo development | es_ES |
dc.subject | Flower | es_ES |
dc.subject | Genetics | es_ES |
dc.subject | Growth, development and aging | es_ES |
dc.subject | Haploidy | es_ES |
dc.subject | Homozygote | es_ES |
dc.subject | Methodology | es_ES |
dc.subject | Plant chromosome | es_ES |
dc.subject | Plant gametogenesis | es_ES |
dc.subject | Ploidy | es_ES |
dc.subject | Pollen | es_ES |
dc.subject | Regeneration | es_ES |
dc.subject | Review | es_ES |
dc.subject | Tissue culture technique | es_ES |
dc.subject | Capsicum | es_ES |
dc.subject | Chromosomes, Plant | es_ES |
dc.subject | Embryonic Development | es_ES |
dc.subject | Flowers | es_ES |
dc.subject | Gametogenesis, Plant | es_ES |
dc.subject | Lycopersicon esculentum | es_ES |
dc.subject | Models, Genetic | es_ES |
dc.subject | Ploidies | es_ES |
dc.subject | Solanum melongena | es_ES |
dc.subject | Tissue Culture Techniques | es_ES |
dc.subject.classification | GENETICA | es_ES |
dc.title | Androgenesis in recalcitrant solanaceous crops | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1007/s00299-010-0984-8 | |
dc.relation.projectID | info:eu-repo/grantAgreement/MEC//AGL2006-06678/ES/OBTENCION DE LINEAS DOBLE HAPLOIDES EN SOLANACEAS DE ELEVADO INTERES AGRONOMICO: ANALISIS DE AGENTES INDUCTORES Y MECANISMOS CELULARES IMPLICADOS EN LA INDUCCION EMBRIOGENICA EN TOMATE Y BERENJENA/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MICINN//AGL2010-17895/ES/GENERACION EFICIENTE DE DOBLE HAPLOIDES EN BERENJENA Y PIMIENTO MEDIANTE CULTIVO IN VITRO DE MICROSPORAS AISLADAS. ANALISIS CELULAR Y MOLECULAR DEL DESARROLLO ANDROGENICO/ | |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Biotecnología - Departament de Biotecnologia | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Instituto Universitario de Conservación y Mejora de la Agrodiversidad Valenciana - Institut Universitari de Conservació i Millora de l'Agrodiversitat Valenciana | es_ES |
dc.description.bibliographicCitation | Seguí-Simarro, JM.; Corral Martínez, P.; Parra Vega, V.; Gonzalez Garcia, B. (2011). Androgenesis in recalcitrant solanaceous crops. Plant Cell Reports. 30(5):765-778. https://doi.org/10.1007/s00299-010-0984-8 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | http://dx.doi.org/10.1007/s00299-010-0984-8 | es_ES |
dc.description.upvformatpinicio | 765 | es_ES |
dc.description.upvformatpfin | 778 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 30 | es_ES |
dc.description.issue | 5 | es_ES |
dc.relation.senia | 198308 | es_ES |
dc.identifier.pmid | 21191595 | |
dc.contributor.funder | Ministerio de Educación y Ciencia | |
dc.description.references | Adkins SW, Kunanuvatchaidach R, Gray SJ, Adkins AL (1993) Effect of ethylene and culture environment on rice callus proliferation. J Exp Bot 44:1829–1835 | es_ES |
dc.description.references | Azpeitia A, Chan JL, Saenz L, Oropeza C (2003) Effect of 22(S), 23(S)-homobrassinolide on somatic embryogenesis in plumule explants of Cocos nucifera (L.) cultured in vitro. J Hort Sci Biotechnol 78:591–596 | es_ES |
dc.description.references | Bal U, Abak K (2005) Induction of symmetrical nucleus division and multicellular structures from the isolated microspores of Lycopersicon esculentum Mill. Biotechnol Biotechnol Eq 19:35–42 | es_ES |
dc.description.references | Bal U, Abak K (2007) Haploidy in tomato (Lycopersicon esculentum Mill.): a critical review. Euphytica 158:1–9 | es_ES |
dc.description.references | Bal U, Ellialtioglu S, Abak K (2009) Induction of symmetrical nucleus division and multi-nucleate structures in microspores of eggplant (Solanum melongena L.) cultured in vitro. Sci Agric 66:535–539 | es_ES |
dc.description.references | Belmonte M, Elhiti M, Waldner B, Stasolla C (2010) Depletion of cellular brassinolide decreases embryo production and disrupts the architecture of the apical meristems in Brassica napus microspore-derived embryos. J Exp Bot 61:2779–2794 | es_ES |
dc.description.references | Belmonte MF, Ambrose SJ, Ross ARS, Abrams SR, Stasolla C (2006) Improved development of microspore-derived embryo cultures of Brassica napus cv Topas following changes in glutathione metabolism. Physiol Plant 127:690–700 | es_ES |
dc.description.references | Belogradova K, Lewicka I, Heberle-Bors E, Touraev A (2009) An overview of tobacco doubled haploids. In: Touraev A, Forster BP, Jain SM (eds) Advances in haploid production in higher plants. Springer, Dordrecht, pp 75–85 | es_ES |
dc.description.references | Bhatia P, Ashwath N, Senaratna T, Midmore D (2004) Tissue culture studies of tomato (Lycopersicon esculentum). Plant Cell Tiss Org 78:1–21 | es_ES |
dc.description.references | Borderies G, le Bechec M, Rossignol M, Lafitte C, Le Deunff E, Beckert M, Dumas C, Matthys-Rochon E (2004) Characterization of proteins secreted during maize microspore culture: arabinogalactan proteins (AGPs) stimulate embryo development. Eur J Cell Biol 83:205–212 | es_ES |
dc.description.references | Corral-Martínez P, Nuez F, Seguí-Simarro JM (2008) Recent advances in eggplant microspore cultures for production of androgenic doubled haploids. In: Prohens J, Badenes ML (eds) Modern variety breeding for present and future needs UPV Press. Valencia, Spain, pp 104–108 | es_ES |
dc.description.references | Corral-Martínez P, Nuez F, Seguí-Simarro JM (2010) Genetic, quantitative and microscopic evidence for fusion of haploid nuclei and growth of somatic calli in cultured ms10 35 tomato anthers. Euphytica. doi: 10.1007/s10681-010-0303-z | es_ES |
dc.description.references | Chen JT, Chang WC (2003) 1-Aminocyclopropane-1-carboxylic acid enhanced direct somatic embryogenesis from Oncidium leaf cultures. Biol Plant 46:455–458 | es_ES |
dc.description.references | Cheung AY, Wu HM (1999) Arabinogalactan proteins in plant sexual reproduction. Protoplasma 208:87–98 | es_ES |
dc.description.references | Dao NT, Shamina ZB (1978) Cultivation of isolated tomato anthers. Sov Plant Physiol 25:120–126 | es_ES |
dc.description.references | Dolcet-Sanjuan R, Claveria E, Huerta A (1997) Androgenesis in Capsicum annuum L—effects of carbohydrate and carbon dioxide enrichment. J Am Soc Hortic Sci 122:468–475 | es_ES |
dc.description.references | Dumas de Vaulx R, Chambonnet D (1982) Culture in vitro d’anthères d’aubergine (Solanum melongena L.): stimulation de la production de plantes au moyen de traitements à 35ºC associés à de faibles teneurs en substances de croissance. Agronomie 2:983–988 | es_ES |
dc.description.references | Dumas de Vaulx R, Chambonnet D, Pochard E (1981) Culture in vitro d’anthères de piment (Capsicum annuum L.): amèlioration des taux d’obtenction de plantes chez différents génotypes par des traitments à +35ºC. Agronomie 1:859–864 | es_ES |
dc.description.references | Dunwell JM (2010) Haploids in flowering plants: origins and exploitation. Plant Biotechnol J 8:377–424 | es_ES |
dc.description.references | Elhiti M, Tahir M, Gulden RH, Khamiss K, Stasolla C (2010) Modulation of embryo-forming capacity in culture through the expression of Brassica genes involved in the regulation of the shoot apical meristem. J Exp Bot 61:4069–4085 | es_ES |
dc.description.references | FAOSTAT (2009). http://faostat.fao.org | es_ES |
dc.description.references | Feher A, Pasternak TP, Dudits D (2003) Transition of somatic plant cells to an embryogenic state. Plant Cell Tiss Org 74:201–228 | es_ES |
dc.description.references | Foolad MR (2007) Genome mapping and molecular breeding of tomato. Int J Plant Genomics 2007(64358):1–52 | es_ES |
dc.description.references | Gémes Juhász A, Kristóf Z, Vági P, Lantos C, Pauk J (2009) In vitro anther and isolated microspore culture as tools in sweet and spice pepper breeding. Acta Hort 829:61–64 | es_ES |
dc.description.references | George L, Narayanaswamy S (1973) Haploid Capsicum through experimental androgenesis. Protoplasma 78:467–470 | es_ES |
dc.description.references | Guha S, Maheshwari SC (1964) In vitro production of embryos from anthers of Datura. Nature 204:497 | es_ES |
dc.description.references | Hatanaka T, Sawabe E, Azuma T, Uchida N, Yasuda T (1995) The role of ethylene in somatic embryogenesis from leaf discs of Coffea canephora. Plant Sci 107:199–204 | es_ES |
dc.description.references | Hays DB, Mandel RM, Pharis RP (2001) Hormones in zygotic and microspore embryos of Brassica napus. Plant Growth Regul 35:47–58 | es_ES |
dc.description.references | Hays DB, Reid DM, Yeung EC, Pharis RP (2000) Role of ethylene in cotyledon development of microspore-derived embryos of Brassica napus. J Exp Bot 51:1851–1859 | es_ES |
dc.description.references | Isouard G, Raquin C, Demarly Y (1979) Obtention de plantes haploides et diploides par culture in vitro d’anthères dáubergine (Solanum melongena L.). C R Acad Sci Paris 288:987–989 | es_ES |
dc.description.references | Kantharajah AS, Golegaonkar PG (2004) Somatic embryogenesis in eggplant. Sci Hort 99:107–117 | es_ES |
dc.description.references | Kim M, Jang I-C, Kim J-A, Park E-J, Yoon M, Lee Y (2008) Embryogenesis and plant regeneration of hot pepper (Capsicum annuum L.) through isolated microspore culture. Plant Cell Rep 27:425–434 | es_ES |
dc.description.references | Knapp S, Bohs L, Nee M, Spooner DM (2004) Solanaceae—a model for linking genomics with biodiversity. Comp Funct Genom 5:285–291 | es_ES |
dc.description.references | Kothari SL, Joshi A, Kachhwaha S, Ochoa-Alejo N (2010) Chilli peppers—a review on tissue culture and transgenesis. Biotechnol Adv 28:35–48 | es_ES |
dc.description.references | Kristiansen K, Andersen SB (1993) Effects of donor plant, temperature, photoperiod and age on anther culture response of Capsicum annuum L. Euphytica 67:105–109 | es_ES |
dc.description.references | Kuo JS, Wang YY, Chien NF, Ku SJ, Kung ML, Hsu HC (1973) Investigations on the anther culture in vitro of Nicotiana tabacum L. and Capsicum annuum L. Acta Bot Sin 15:47–52 | es_ES |
dc.description.references | Letarte J, Simion E, Miner M, Kasha KJ (2006) Arabinogalactans and arabinogalactan-proteins induce embryogenesis in wheat (Triticum aestivum L.) microspore culture. Plant Cell Rep 24:691–698 | es_ES |
dc.description.references | Malik MR, Wang F, Dirpaul J, Zhou N, Hammerlindl J, Keller W, Abrams SR, Ferrie AMR, Krochko JE (2008) Isolation of an embryogenic line from non-embryogenic Brassica napus cv. Westar through microspore embryogenesis. J Exp Bot 59:2857–2873 | es_ES |
dc.description.references | Maluszynski M, Kasha KJ, Szarejko I (2003) Published doubled haploid protocols in plant species. In: Maluszynski M, Kasha KJ, Forster BP, Szarejko I (eds) Doubled haploid production in crop plants. A manual. Kluwer, Dordrecht, pp 309–335 | es_ES |
dc.description.references | Meijer EGM, Brown DCW (1988) Inhibition of somatic embryogenesis in tissue cultures of Medicago sativa by aminoethoxyvinylglycine, aminooxyacetic acid, 2, 4-dinitrophenol and salicylic acid at concentrations which do not inhibit ethylene biosynthesis and growth. J Exp Bot 39:263–270 | es_ES |
dc.description.references | Miller JC, Tanksley SD (1990) RFLP analysis of phylogenetic relationships and genetic variation in the genus Lycopersicon. Theor Appl Genet 80:437–448 | es_ES |
dc.description.references | Misra NR, Varghese TM, Maherchandani N, Jain RK (1983) Studies on induction and differentiation of androgenic callus of Solanum melongena L. In: Sen SK, Giles KL (eds) Plant cell culture in crop improvement. Plenum Press, New York, pp 465–468 | es_ES |
dc.description.references | Mityko J, Andrasfalvy A, Csillery G, Fari M (1995) Anther culture response in different genotypes and F1 hybrids of pepper (Capsicum Annuum L). Plant Breed 114:78–80 | es_ES |
dc.description.references | Miyoshi K (1996) Callus induction and plantlet formation through culture of isolated microspores of eggplant (Solanum melongena L). Plant Cell Rep 15:391–395 | es_ES |
dc.description.references | Morrison RA, Koning RE, Evans DA (1986) Anther culture of an interspecific hybrid of Capsicum. J Plant Physiol 126:1–9 | es_ES |
dc.description.references | Novak FJ (1974) Induction of a haploid callus in anther cultures of Capsicum sp. Z Pflanzenzucht 72:46–54 | es_ES |
dc.description.references | Nowaczyk P, Kisiala A, Olszewska D (2006) Induced androgenesis of Capsicum frutescens L. Acta Physiol Plant 28:35–39 | es_ES |
dc.description.references | Paire A, Devaux P, Lafitte C, Dumas C, Matthys-Rochon E (2003) Proteins produced by barley microspores and their derived androgenic structures promote in vitro zygotic maize embryo formation. Plant Cell Tiss Org 73:167–176 | es_ES |
dc.description.references | Palmer CE, Keller WA (2005) Overview of haploidy. In: Palmer CE, Keller WA, Kasha KJ (eds) Haploids in crop improvement II. Springer, Berlin, pp 3–9 | es_ES |
dc.description.references | Parra-Vega V, Palacios-Calvo N, Corral-Martínez P, Seguí-Simarro JM (2010) Establishment of isolated microspore cultures in pepper of the California and Lamuyo types. In: Prohens J, Rodríguez-Burruezo A (eds) Advances in genetics and breeding of Capsicum and eggplant UPV Press. Valencia, Spain, pp 411–415 | es_ES |
dc.description.references | Pickersgill B (1997) Genetic resources and breeding of Capsicum spp. Euphytica 96:129–133 | es_ES |
dc.description.references | Ptak A, Tahchy A, Wyżgolik G, Henry M, Laurain-Mattar D (2010) Effects of ethylene on somatic embryogenesis and galanthamine content in Leucojum aestivum L. cultures. Plant Cell Tissue Organ Cult 102:61–67 | es_ES |
dc.description.references | Raina SK, Iyer RD (1973) Differentiation of diploid plants from pollen callus in anther cultures of Solanum melongena L. Z Pflanzenzucht 70:275–280 | es_ES |
dc.description.references | Ramesar-Fortner NS, Yeung EC (2006) Physiological influences in the development and function of the shoot apical meristem of microspore-derived embryos of Brassica napus ‘Topas’. Can J Bot 84:371–383 | es_ES |
dc.description.references | Ravi M, Chan SWL (2010) Haploid plants produced by centromere-mediated genome elimination. Nature 464:615–618 | es_ES |
dc.description.references | Regner F (1996) Anther and microspore culture in Capsicum. In: Jain SM, Sopory SK, Veilleux RE (eds) In vitro haploid production in higher plants. Kluwer Academic, Dordrecht, pp 77–89 | es_ES |
dc.description.references | Rick CM (1976) Tomato, Lycopersicon esculentum (Solanaceae). In: Simmonds NW (ed) Evolution of crop plants Longman. London, UK, pp 268–273 | es_ES |
dc.description.references | Rizza F, Mennella G, Collonnier C, Shiachakr D, Kashyap V, Rajam MV, Prestera M, Rotino GL (2002) Androgenic dihaploids from somatic hybrids between Solanum melongena and S. aethiopicum group Gilo as a source of resistance to Fusarium oxysporum f. sp. melongenae. Plant Cell Rep 20:1022–1032 | es_ES |
dc.description.references | Rokka VM (2009) Potato haploids and breeding. In: Touraev A, Forster BP, Jain SM (eds) Advances in haploid production in higher plants Springer. Dordrecht, The Netherlands, pp 199–208 | es_ES |
dc.description.references | Rotino GL (1996) Haploidy in eggplant. In: Jain SM, Sopory SK, Veilleux RE (eds) In vitro haploid production in higher plants. Kluwer, Dordrecht, pp 115–141 | es_ES |
dc.description.references | Rotino GL, Restaino F, Gjomarkaj M, Massimo M, Falavigna A, Schiavi M, Vicini E (1991) Evaluation of genetic variability in embryogenetic and androgenetic lines of eggplant. Acta Hort 300:357–362 | es_ES |
dc.description.references | Rotino GL, Sihachakr D, Rizza F, Vale G, Tacconi MG, Alberti P, Mennella G, Sabatini E, Toppino L, D’Alessandro A, Acciarri N (2005) Current status in production and utilization of dihaploids from somatic hybrids between eggplant (Solanum melongena L.) and its wild relatives. Acta Physiol Plant 27:723–733 | es_ES |
dc.description.references | Rudolf K, Bohanec B, Hansen M (1999) Microspore culture of white cabbage, Brassica oleracea var capitata L.: genetic improvement of non-responsive cultivars and effect of genome doubling agents. Plant Breed 118:237–241 | es_ES |
dc.description.references | Sanguineti MC, Tuberosa R, Conti S (1990) Field evaluation of androgenetic lines of eggplant. Acta Hort 280:177–182 | es_ES |
dc.description.references | Seguí-Simarro JM (2010) Androgenesis revisited. Bot Rev 76:377–404 | es_ES |
dc.description.references | Seguí-Simarro JM, Nuez F (2005) Meiotic metaphase I to telophase II is the most responsive stage of microspore development for induction of androgenesis in tomato (Solanum lycopersicum). Acta Physiol Plant 27:675–685 | es_ES |
dc.description.references | Seguí-Simarro JM, Nuez F (2006) Androgenesis induction from tomato anther cultures: callus characterization. Acta Hort 725:855–861 | es_ES |
dc.description.references | Seguí-Simarro JM, Nuez F (2007) Embryogenesis induction, callogenesis, and plant regeneration by in vitro culture of tomato isolated microspores and whole anthers. J Exp Bot 58:1119–1132 | es_ES |
dc.description.references | Shtereva LA, Zagorska NA, Dimitrov BD, Kruleva MM, Oanh HK (1998) Induced androgenesis in tomato (Lycopersicon esculentum Mill). II. Factors affecting induction of androgenesis. Plant Cell Rep 18:312–317 | es_ES |
dc.description.references | Sibi M, Dumas de Vaulx R, Chambonnet D (1979) Obtention de plantes haploïdes par androgenèse in vitro chez le piment (Capsicum annuum L.). Ann Amélior Plant 29:583–606 | es_ES |
dc.description.references | Songstad DD, Armstrong CL, Petersen WL (1991) AGNO3 increases type-II callus production from immature embryos of maize inbred B73 and its derivatives. Plant Cell Rep 9:699–702 | es_ES |
dc.description.references | Srivastava P, Chaturvedi R (2008) In vitro androgenesis in tree species: an update and prospect for further research. Biotechnol Adv 26:482–491 | es_ES |
dc.description.references | Stasolla C, Belmonte MF, Muhammad T, Mohamed E, Khalil K, Joosen R, Maliepaard C, Sharpe AG, Gjetvaj B, Boutilier K (2008) Buthionine sulfoximine (BSO)-mediated improvement in cultured embryo quality in vitro entails changes in ascorbate metabolism, meristem development and embryo maturation. Planta 228:255–272 | es_ES |
dc.description.references | Supena EDJ, Muswita W, Suharsono S, Custers JBM (2006a) Evaluation of crucial factors for implementing shed-microspore culture of Indonesian hot pepper (Capsicum annuum L.) cultivars. Sci Hort 107:226–232 | es_ES |
dc.description.references | Supena EDJ, Suharsono S, Jacobsen E, Custers JBM (2006b) Successful development of a shed-microspore culture protocol for doubled haploid production in Indonesian hot pepper (Capsicum annuum L.). Plant Cell Rep 25:1–10 | es_ES |
dc.description.references | Tang XC, He YQ, Wang Y, Sun MX (2006) The role of arabinogalactan proteins binding to Yariv reagents in the initiation, cell developmental fate, and maintenance of microspore embryogenesis in Brassica napus L. cv. Topas. J Exp Bot 57:2639–2650 | es_ES |
dc.description.references | Wang Y-Y, Sun C-S, Wang C-C, Chien N-F (1973) The induction of the pollen plantlets of triticale and Capsicum annuum from anther culture. Sci Sin 16:147–151 | es_ES |
dc.description.references | Yeung EC, Stasolla C (2001) Somatic embryogenesis—apical meristems and embryo conversion. Korean J Plant Tiss Cult 27:299–307 | es_ES |
dc.description.references | Zagorska NA, Shtereva A, Dimitrov BD, Kruleva MM (1998) Induced androgenesis in tomato (Lycopersicon esculentum Mill.)—I. Influence of genotype on androgenetic ability. Plant Cell Rep 17:968–973 | es_ES |
dc.description.references | Zagorska NA, Shtereva LA, Kruleva MM, Sotirova VG, Baralieva DL, Dimitrov BD (2004) Induced androgenesis in tomato (Lycopersicon esculentum Mill.). III. Characterization of the regenerants. Plant Cell Rep 22:449–456 | es_ES |
dc.description.references | Zamir D, Jones RA, Kedar N (1980) Anther culture of male sterile tomato (Lycopersicon esculentum Mill.) mutants. Plant Sci Lett 17:353–361 | es_ES |
dc.description.references | Zhong J, Ren YJ, Yu M, Ma TF, Zhang XL, Zhao J (2010) Roles of arabinogalactan proteins in cotyledon formation and cell wall deposition during embryo development of Arabidopsis. Protoplasma 1–13 | es_ES |