- -

Assessing biofilm development in drinking water distribution systems by Machine Learning methods

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

  • Estadisticas de Uso

Assessing biofilm development in drinking water distribution systems by Machine Learning methods

Show full item record

Ramos Martínez, E. (2016). Assessing biofilm development in drinking water distribution systems by Machine Learning methods [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/63257

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/63257

Files in this item

Item Metadata

Title: Assessing biofilm development in drinking water distribution systems by Machine Learning methods
Author: Ramos Martínez, Eva
Director(s): Herrera Fernández, Antonio Manuel Izquierdo Sebastián, Joaquín Pérez García, Rafael
UPV Unit: Universitat Politècnica de València. Departamento de Ingeniería Hidráulica y Medio Ambiente - Departament d'Enginyeria Hidràulica i Medi Ambient
Read date / Event date:
2016-02-05
Issued date:
Abstract:
[EN] One of the main challenges of drinking water utilities is to ensure high quality supply, in particular, in chemical and microbiological terms. However, biofilms invariably develop in all drinking water distribution ...[+]


[ES] Uno de los principales objetivos de las empresas encargadas de la gestión de los sistemas de distribución de agua potable (DWDSs, del inglés Drinking Water Distribution Systems) es asegurar una alta calidad del agua ...[+]


[CA] Un dels principals reptes dels serveis d'aigua potable és garantir el subministrament d'alta qualitat, en particular, en termes químics i microbiològics. No obstant això, els biofilms desenvolupen invariablement en ...[+]
Subjects: Biofilm, drinking water distribution system, pre-processing, machine learning, random forest
Copyrigths: Reserva de todos los derechos
DOI: 10.4995/Thesis/10251/63257
Publisher:
Universitat Politècnica de València
Type: Tesis doctoral

recommendations

 

This item appears in the following Collection(s)

Show full item record