Mostrar el registro sencillo del ítem
dc.contributor.author | Nueda, María José![]() |
es_ES |
dc.contributor.author | Tarazona Campos, Sonia![]() |
es_ES |
dc.contributor.author | Conesa, Ana![]() |
es_ES |
dc.date.accessioned | 2016-05-02T12:49:37Z | |
dc.date.available | 2016-05-02T12:49:37Z | |
dc.date.issued | 2014-09-15 | |
dc.identifier.issn | 1367-4803 | |
dc.identifier.uri | http://hdl.handle.net/10251/63346 | |
dc.description.abstract | [EN] Motivation: The widespread adoption of RNA-seq to quantitatively measure gene expression has increased the scope of sequencing experimental designs to include time-course experiments. maSigPro is an R package specifically suited for the analysis of time-course gene expression data, which was developed originally for microarrays and hence was limited in its application to count data. Results: We have updated maSigPro to support RNA-seq time series analysis by introducing generalized linear models in the algorithm to support the modeling of count data while maintaining the traditional functionalities of the package. We show a good performance of the maSigPro-GLM method in several simulated time-course scenarios and in a real experimental dataset. Availability and implementation: The package is freely available under the LGPL license from the Bioconductor Web site (http:// bioconductor.org) | es_ES |
dc.description.sponsorship | This work has been funded by the FP7 STATegra [GA-30600] project, EU FP7 [30600] and the Spanish MINECO [BIO2012-40244]. | en_EN |
dc.language | Inglés | es_ES |
dc.publisher | Oxford University Press (OUP): Policy B - Oxford Open Option B | es_ES |
dc.relation.ispartof | Bioinformatics | es_ES |
dc.rights | Reconocimiento (by) | es_ES |
dc.subject | Differential expression analysis | es_ES |
dc.subject | Gene | es_ES |
dc.subject | Depth | es_ES |
dc.subject | Course microarray experiments | es_ES |
dc.subject | Normalization | es_ES |
dc.subject | Sequence | es_ES |
dc.subject.classification | ESTADISTICA E INVESTIGACION OPERATIVA | es_ES |
dc.title | Next maSigPro: updating maSigPro Bioconductor package for RNA-seq time series | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1093/bioinformatics/btu333 | |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//BIO2012-40244/ES/DESARROLLO DE RECURSOS COMPUTACIONALES PARA LA CARACTERIZACION Y ANOTACION FUNCIONAL DE ARN NO CODIFICANTE./ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/EC/FP7/30600/EU/ | |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Estadística e Investigación Operativa Aplicadas y Calidad - Departament d'Estadística i Investigació Operativa Aplicades i Qualitat | es_ES |
dc.description.bibliographicCitation | Nueda, MJ.; Tarazona Campos, S.; Conesa, A. (2014). Next maSigPro: updating maSigPro Bioconductor package for RNA-seq time series. Bioinformatics. 30(18):2598-2602. https://doi.org/10.1093/bioinformatics/btu333 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://dx.doi.org/10.1093/bioinformatics/btu333 | es_ES |
dc.description.upvformatpinicio | 2598 | es_ES |
dc.description.upvformatpfin | 2602 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 30 | es_ES |
dc.description.issue | 18 | es_ES |
dc.relation.senia | 269164 | es_ES |
dc.identifier.eissn | 1460-2059 | |
dc.identifier.pmid | 24894503 | en_EN |
dc.identifier.pmcid | PMC4155246 | en_EN |
dc.contributor.funder | European Commission | |
dc.contributor.funder | Ministerio de Economía y Competitividad | |
dc.description.references | Anders, S., & Huber, W. (2010). Differential expression analysis for sequence count data. Genome Biology, 11(10). doi:10.1186/gb-2010-11-10-r106 | es_ES |
dc.description.references | Bullard, J. H., Purdom, E., Hansen, K. D., & Dudoit, S. (2010). Evaluation of statistical methods for normalization and differential expression in mRNA-Seq experiments. BMC Bioinformatics, 11(1). doi:10.1186/1471-2105-11-94 | es_ES |
dc.description.references | Conesa, A., Nueda, M. J., Ferrer, A., & Talon, M. (2006). maSigPro: a method to identify significantly differential expression profiles in time-course microarray experiments. Bioinformatics, 22(9), 1096-1102. doi:10.1093/bioinformatics/btl056 | es_ES |
dc.description.references | Hacquard, S., Kracher, B., Maekawa, T., Vernaldi, S., Schulze-Lefert, P., & Ver Loren van Themaat, E. (2013). Mosaic genome structure of the barley powdery mildew pathogen and conservation of transcriptional programs in divergent hosts. Proceedings of the National Academy of Sciences, 110(24), E2219-E2228. doi:10.1073/pnas.1306807110 | es_ES |
dc.description.references | Hoogerwerf, W. A., Sinha, M., Conesa, A., Luxon, B. A., Shahinian, V. B., Cornélissen, G., … Cassone, V. M. (2008). Transcriptional Profiling of mRNA Expression in the Mouse Distal Colon. Gastroenterology, 135(6), 2019-2029. doi:10.1053/j.gastro.2008.08.048 | es_ES |
dc.description.references | Levin, A. M., de Vries, R. P., Conesa, A., de Bekker, C., Talon, M., Menke, H. H., … Wösten, H. A. B. (2007). Spatial Differentiation in the Vegetative Mycelium ofAspergillus niger. Eukaryotic Cell, 6(12), 2311-2322. doi:10.1128/ec.00244-07 | es_ES |
dc.description.references | Liu, Y., Zhou, J., & White, K. P. (2013). RNA-seq differential expression studies: more sequence or more replication? Bioinformatics, 30(3), 301-304. doi:10.1093/bioinformatics/btt688 | es_ES |
dc.description.references | Maekawa, T., Kracher, B., Vernaldi, S., Ver Loren van Themaat, E., & Schulze-Lefert, P. (2012). Conservation of NLR-triggered immunity across plant lineages. Proceedings of the National Academy of Sciences, 109(49), 20119-20123. doi:10.1073/pnas.1218059109 | es_ES |
dc.description.references | Medina, I., Carbonell, J., Pulido, L., Madeira, S. C., Goetz, S., Conesa, A., … Dopazo, J. (2010). Babelomics: an integrative platform for the analysis of transcriptomics, proteomics and genomic data with advanced functional profiling. Nucleic Acids Research, 38(suppl_2), W210-W213. doi:10.1093/nar/gkq388 | es_ES |
dc.description.references | Mortazavi, A., Williams, B. A., McCue, K., Schaeffer, L., & Wold, B. (2008). Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nature Methods, 5(7), 621-628. doi:10.1038/nmeth.1226 | es_ES |
dc.description.references | Nueda, M. j., Ferrer, A., & Conesa, A. (2011). ARSyN: a method for the identification and removal of systematic noise in multifactorial time course microarray experiments. Biostatistics, 13(3), 553-566. doi:10.1093/biostatistics/kxr042 | es_ES |
dc.description.references | Risso, D., Schwartz, K., Sherlock, G., & Dudoit, S. (2011). GC-Content Normalization for RNA-Seq Data. BMC Bioinformatics, 12(1), 480. doi:10.1186/1471-2105-12-480 | es_ES |
dc.description.references | Roberts, A., & Pachter, L. (2012). Streaming fragment assignment for real-time analysis of sequencing experiments. Nature Methods, 10(1), 71-73. doi:10.1038/nmeth.2251 | es_ES |
dc.description.references | Robinson, M. D., & Oshlack, A. (2010). A scaling normalization method for differential expression analysis of RNA-seq data. Genome Biology, 11(3), R25. doi:10.1186/gb-2010-11-3-r25 | es_ES |
dc.description.references | Robinson, M. D., McCarthy, D. J., & Smyth, G. K. (2009). edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics, 26(1), 139-140. doi:10.1093/bioinformatics/btp616 | es_ES |
dc.description.references | Sims, D., Sudbery, I., Ilott, N. E., Heger, A., & Ponting, C. P. (2014). Sequencing depth and coverage: key considerations in genomic analyses. Nature Reviews Genetics, 15(2), 121-132. doi:10.1038/nrg3642 | es_ES |
dc.description.references | Tarazona, S., Garcia-Alcalde, F., Dopazo, J., Ferrer, A., & Conesa, A. (2011). Differential expression in RNA-seq: A matter of depth. Genome Research, 21(12), 2213-2223. doi:10.1101/gr.124321.111 | es_ES |
dc.description.references | Trapnell, C., Roberts, A., Goff, L., Pertea, G., Kim, D., Kelley, D. R., … Pachter, L. (2012). Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks. Nature Protocols, 7(3), 562-578. doi:10.1038/nprot.2012.016 | es_ES |
dc.description.references | Terol, J., Conesa, A., Colmenero, J. M., Cercos, M., Tadeo, F., Agustí, J., … Talon, M. (2007). BMC Genomics, 8(1), 31. doi:10.1186/1471-2164-8-31 | es_ES |