- -

Integrable microwave filter based on a photonic crystal delay line

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Integrable microwave filter based on a photonic crystal delay line

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Sancho Durá, Juan es_ES
dc.contributor.author Bourderionnet, Jerome es_ES
dc.contributor.author Lloret Soler, Juan Antonio es_ES
dc.contributor.author Combrie, Sylvain es_ES
dc.contributor.author Gasulla Mestre, Ivana es_ES
dc.contributor.author Xavier, Stephane es_ES
dc.contributor.author Sales Maicas, Salvador es_ES
dc.contributor.author Colman, Pierre es_ES
dc.contributor.author Lehoucq, Gaelle es_ES
dc.contributor.author Dolfi, Daniel es_ES
dc.contributor.author Capmany Francoy, José es_ES
dc.contributor.author De Rossi, Alfredo es_ES
dc.date.accessioned 2016-05-03T08:23:57Z
dc.date.available 2016-05-03T08:23:57Z
dc.date.issued 2012-09
dc.identifier.issn 2041-1723
dc.identifier.uri http://hdl.handle.net/10251/63394
dc.description.abstract The availability of a tunable delay line with a chip-size footprint is a crucial step towards the full implementation of integrated microwave photonic signal processors. Achieving a large and tunable group delay on a millimetre-sized chip is not trivial. Slow light concepts are an appropriate solution, if propagation losses are kept acceptable. Here we use a low-loss 1.5 mm-long photonic crystal waveguide to demonstrate both notch and band-pass microwave filters that can be tuned over the 0 50-GHz spectral band. The waveguide is capable of generating a controllable delay with limited signal attenuation (total insertion loss below 10 dB when the delay is below 70 ps) and degradation. Owing to the very small footprint of the delay line, a fully integrated device is feasible, also featuring more complex and elaborate filter functions. es_ES
dc.description.sponsorship This work was funded by the European Union under the project GOSPEL (grant 219299) and by the Valencian Government (Prometeo GVA 2008-92). We thank S. Hughes and P. Lalanne for enlightening discussion about the impact of disorder in photonic crystal waveguides. en_EN
dc.language Inglés es_ES
dc.publisher Nature Publishing Group es_ES
dc.relation.ispartof Nature Communications es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject WAVE-GUIDES es_ES
dc.subject SLOW LIGHT es_ES
dc.subject RING RESONATORS es_ES
dc.subject SILICON es_ES
dc.subject MODULATION es_ES
dc.subject DISPERSION es_ES
dc.subject SIGNALS es_ES
dc.subject CHIP es_ES
dc.subject.classification TEORIA DE LA SEÑAL Y COMUNICACIONES es_ES
dc.title Integrable microwave filter based on a photonic crystal delay line es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1038/ncomms2092
dc.relation.projectID info:eu-repo/grantAgreement/EC/FP7/219299/EU/Governing the speed of light/
dc.relation.projectID info:eu-repo/grantAgreement/GVA//PROMETEO08%2F2008%2F092/ES/Tecnologias y aplicaciones avanzadas y emergentes de la fotonica de microondas (microwave photonics advanced and emergent technologies and applications)/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario de Telecomunicación y Aplicaciones Multimedia - Institut Universitari de Telecomunicacions i Aplicacions Multimèdia es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Comunicaciones - Departament de Comunicacions es_ES
dc.description.bibliographicCitation Sancho Durá, J.; Bourderionnet, J.; Lloret Soler, JA.; Combrie, S.; Gasulla Mestre, I.; Xavier, S.; Sales Maicas, S.... (2012). Integrable microwave filter based on a photonic crystal delay line. Nature Communications. 3:1-9. https://doi.org/10.1038/ncomms2092 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/10.1038/ncomms2092 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 9 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 3 es_ES
dc.relation.senia 237878 es_ES
dc.contributor.funder Generalitat Valenciana es_ES
dc.description.references Seeds, A. Microwave photonics. IEEE Trans. Microwave Theory Tech. 50, 877–887 (2002). es_ES
dc.description.references Capmany, J. & Novak, D. Microwave photonics combines two worlds. Nat. Photon 1, 319–330 (2007). es_ES
dc.description.references Yao, J. P. Microwave photonics. J. Lightwave Technol. 27, 314–335 (2009). es_ES
dc.description.references See special technology focus on microwave photonics. Nat. Photon 5, 723–736 (2011). es_ES
dc.description.references Capmany, J., Ortega, B. & Pastor, D. A tutorial on microwave photonic filters. J. Lightwave. Technol. 24, 201–229 (2006). es_ES
dc.description.references Long, J. et al. A tunable microstrip bandpass filter with two independently adjustable transmission zeros. IEEE Microw. Wireless Compon. Lett. 21, 74–76 (2011). es_ES
dc.description.references Velez, A. et al. Tunable coplanar waveguide band-stop and band-pass filters based on open split ring resonators and open complementary split ring resonators. IEEE Microw. Antennas Propag. 5, 277–281 (2011). es_ES
dc.description.references Sekar, V., Armendariz, M. & Entesari, K. A 1.2-1.6-GHz substrate-integrated-waveguide RF MEMS tunable filter. IEEE Trans. Microwave Theory Tech. 59, 866–876 (2011). es_ES
dc.description.references Rafique, M. R. et al. Miniaturized superconducting microwave filters. Supercond. Sci. Technol. 21, 075004 (2008). es_ES
dc.description.references Velu, G. et al. A 360° BST phase shifter with moderate bias voltage at 30 GHz. IEEE Trans. Microwave Theory Tech. 55, 438–444 (2007). es_ES
dc.description.references Koh, K. J. & Rebeiz, G. M. A 6-18 GHz active phase shifter. In Proceedings IEEE Microwave Symposium Digest 792–795 (2010). es_ES
dc.description.references Capmany, J., Pastor, D. & Ortega, B. New and flexible fiber-optic delay-line filters using chirped Bragg gratings and laser arrays. IEEE Trans. Microwave Theory Tech. 47, 1321–1326 (1999). es_ES
dc.description.references Minasian, R. A. Photonic signal processing of microwave signals. IEEE Trans. Microwave Theory Tech. 54, 832–846 (2006). es_ES
dc.description.references Dai, Y. & Yao, J. P. Nonuniformly-spaced photonic microwave delay-line filter. Opt. Express 16, 4713–4718 (2008). es_ES
dc.description.references Hamidi, E., Leaird, D. E. & Weiner, A. M. Tunable programmable microwave photonic filters based on an optical frequency comb. IEEE Trans. Microwave Theory Tech. 58, 3269–3278 (2010). es_ES
dc.description.references Chan, E. H. W. & Minasian, R. A. Coherence-free high-resolution RF/microwave photonic bandpass filter with high skirt selectivity and high stopband attenuation. J. Lightwave Technol. 28, 1646–1651 (2010). es_ES
dc.description.references Norberg, E. J. et al. Programmable photonic microwave filters monolithically integrated in InPinGaAsP. J. Lightwave. Technol. 29, 1611–1619 (2011). es_ES
dc.description.references Chen, H. W. et al. Integrated microwave photonic filter on a hybrid silicon platform. IEEE Trans. Microwave Theory Tech. 58, 3213–3219 (2010). es_ES
dc.description.references Dong, P. et al. GHz-bandwidth optical filters based on high-order silicon ring resonators. Opt. Express 18, 23784–23789 (2010). es_ES
dc.description.references Lloret, J. et al. Tunable complex-valued multi-tap microwave photonic filter based on single silicon-on-insulator microring resonator. Opt. Express 19, 12402–12407 (2011). es_ES
dc.description.references Notomi, M. et al. Extremely large group-velocity dispersion of line-defect waveguides in photonic crystal slabs. Phys. Rev. Lett. 87, 253902 (2001). es_ES
dc.description.references Knight, J. C. Photonic crystal fibres. Nature 424, 847–851 (2003). es_ES
dc.description.references Supradeepa, V. R. et al. Comb-based radiofrequency photonic filters with rapid tunability and high selectivity. Nat. Photon. 6, 186–194 (2012). es_ES
dc.description.references Capmany, J., Ortega, B., Pastor, D. & Sales, S. Discrete-time optical processing of microwave signals. J. Lightwave Technol. 23, 702–723 (2005). es_ES
dc.description.references Hunter, D. B. & Minasian, R. A Tunable microwave fiber-optic bandpass filters. IEEE Photon. Tech. Lett. 11, 874–876 (1999). es_ES
dc.description.references Baba, T. Slow light in photonic crystals. Nat. Photon. 2, 465–473 (2008). es_ES
dc.description.references Kuramochi, E. et al. Disorder-induced scattering loss of line-defect waveguides in photonic crystal slabs. Phys. Rev B 72, 161318 (2005). es_ES
dc.description.references Ishikura, N., Baba, T., Kuramochi, E. & Notomi, M. Large tunable fractional delay of slow light pulse and its application to fast optical correlator. Opt. Express 19, 24102–24108 (2011). es_ES
dc.description.references O'Faolain, L. et al. Loss engineered slow light waveguides. Opt. Express 18, 27627–27638 (2010). es_ES
dc.description.references Baron, A., Mazoyer, S., Smigaj, W. & Lalanne, P. Attenuation Coefficient of Single-Mode Periodic Waveguides. Phys. Rev. Lett. 107, 153901 (2011). es_ES
dc.description.references Patterson, M. et al. Disorder-Induced Coherent Scattering in Slow-Light Photonic Crystal Waveguides. Phys. Rev. Lett. 102, 253903 (2009). es_ES
dc.description.references Mazoyer, S., Hugonin, J. P. & Lalanne, P. Disorder-Induced Multiple Scattering in Photonic-Crystal Waveguides. Phys. Rev. Lett. 103, 063903 (2009). es_ES
dc.description.references Combrié, S. et al. Time-delay measurement in singlemode, low-loss photonic crystal waveguides. Electron. Lett. 42, 86–87 (2006). es_ES
dc.description.references Liang, J. et al. Wideband ultraflat slow light with large group index in a W1 photonic crystal waveguide. J. App. Phys. 110, 063103 (2011). es_ES
dc.description.references Roy, S. Modeling the dispersion of the nonlinearity in slow mode photonic crystal waveguides. IEEE Photonics. Journal 4, 224–233 (2012). es_ES
dc.description.references Colman, P., Combrié, S. & De Rossi, A. Control of dispersion in photonic crystal waveguides using group symmetry theory. Opt. Express 20, 13108–13114 (2012). es_ES
dc.description.references Vy Tran, Q., Combrié, S., Colman, P. & De Rossi, A. Photonic crystal membrane waveguides with low insertion losses. Appl. Phys. Lett. 95, 061105 (2009). es_ES
dc.description.references Bolea, M., Mora, J., Ortega, B. & Capmany, J. Highly chirped single-bandpass microwave photonic filter with reconfiguration capabilities. Opt. Express 19, 4566–4576 (2011). es_ES
dc.description.references Binetti, P. et al. Indium phosphide integrated circuits for coherent optical links. IEEE J. Quantum Electron. 48, 279–291 (2012). es_ES
dc.description.references Thomson, D. J. et al. High contrast 40Gbit/s optical modulation in silicon. Opt. Express 19, 11507–11516 (2011). es_ES
dc.description.references Asghari, M. & Krishnamoorthy, A. V. Energy efficient communication. Nat. Photon. 5, 268–270 (2011). es_ES
dc.description.references Vivien, L. et al. Zero-bias 40Gbit/s germanium waveguide photodetector on silicon. Opt. Express 20, 1096–1101 (2012). es_ES
dc.description.references Feng, N. N. et al. 30GHz Ge electro-absorption modulator integrated with 3 μm silicon-on-insulator waveguide. Opt. Express 19, 7062–7067 (2011). es_ES
dc.description.references Trinh, P. D., Yegnanarayanan, S., Coppinger, F. & Jalali, B. Compact multimode interference couplers in Silicon-on-insulator technology. Conference on Lasers and Electro-Optics CLEO '97CThV4, 441 (Baltimore, USA, 1997). es_ES
dc.description.references Loayssa, A., Capmany, J., Sagues, M. & Mora, J. Demonstration of incoherent microwave photonic filters with all-optical complex coefficients. IEEE Photon. Tech. Lett. 18, 1744–1746 (2006). es_ES
dc.description.references Zhang, W. & Minasian, R. A. Widely tunable single-passband microwave photonic filter based on stimulated Brillouin scattering. IEEE Photon. Tech. Lett. 23, 1775–1777 (2011). es_ES
dc.description.references Xue, W., Sales, S., Mork, J. & Capmany, J. Widely tunable microwave photonic notch filter based on slow and fast light effects. IEEE Photon. Tech. Lett. 21, 167–169 (2009). es_ES
dc.description.references Norberg, E. J. et al. A monolithic programmable optical filter for RF signal processing. in Proceedings Microwave Photonics Conf. (Montreal, Canada, 2010). es_ES
dc.description.references Vlasov, Y. A., O'Boyle, M., Hamann, H. F. & McNab, S. J. Active control of slow light on a chip with photonic crystal waveguides. Nature 438, 65–69 (2005). es_ES
dc.description.references Eckhouse, V. et al. Highly efficient four wave mixing in GaInP photonic crystal waveguides. Opt. Lett. 35, 1440–1442 (2010). es_ES
dc.description.references Sagues, M. et al. Multi-tap complex-coefficient incoherent microwave photonic filters based on optical single-sideband modulation and narrow band optical filtering. Opt. Express 16, 295–303 (2008). es_ES
dc.description.references Huang, T. X. H., Yi, X. & Minasian, R. A. Single passband microwave photonic filter using continuous-time impulse response. Opt. Express 19, 6231–6242 (2011). es_ES
dc.description.references Burla, M. et al. On-chip CMOS compatible reconfigurable optical delay line with separate carrier tuning for microwave photonic signal processing. Opt. Express 19, 21475–21484 (2011). es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem