- -

Lateral forces on circularly polarizable particles near a surface

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Lateral forces on circularly polarizable particles near a surface

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Rodríguez Fortuño, Francisco José es_ES
dc.contributor.author Engheta, Nader es_ES
dc.contributor.author Martínez Abietar, Alejandro José es_ES
dc.contributor.author Zayats, Anatoly V. es_ES
dc.date.accessioned 2016-05-03T09:53:53Z
dc.date.available 2016-05-03T09:53:53Z
dc.date.issued 2015-11
dc.identifier.issn 2041-1723
dc.identifier.uri http://hdl.handle.net/10251/63403
dc.description.abstract Optical forces allow manipulation of small particles and control of nanophotonic structures with light beams. While some techniques rely on structured light to move particles using field intensity gradients, acting locally, other optical forces can push particles on a wide area of illumination but only in the direction of light propagation. Here we show that spin orbit coupling, when the spin of the incident circularly polarized light is converted into lateral electromagnetic momentum, leads to a lateral optical force acting on particles placed above a substrate, associated with a recoil mechanical force. This counterintuitive force acts in a direction in which the illumination has neither a field gradient nor propagation. The force direction is switchable with the polarization of uniform, plane wave illumination, and its magnitude is comparable to other optical forces. es_ES
dc.description.sponsorship This work has been supported, in part, by EPSRC (UK). A.V.Z. acknowledges support from the Royal Society and the Wolfson Foundation. N.E. acknowledges partial support from the US Office of Naval Research Multidisciplinary University Research Initiative Grant No. N00014-10-1-0942. A.M. acknowledges support from the Spanish Government (contract Nos TEC2011-28664-C02-02 and TEC2014-51902-C2-1-R). en_EN
dc.language Inglés es_ES
dc.publisher Nature Publishing Group es_ES
dc.relation.ispartof Nature Communications es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Plasmonics es_ES
dc.subject Spin-orbit es_ES
dc.subject Optical forces es_ES
dc.subject.classification TEORIA DE LA SEÑAL Y COMUNICACIONES es_ES
dc.title Lateral forces on circularly polarizable particles near a surface es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1038/ncomms9799
dc.relation.projectID info:eu-repo/grantAgreement/ONR//N00014-10-1-0942/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//TEC2011-28664-C02-02/ES/APPLICATIONS OF METAMATERIALS IN THE OPTICAL RANGE/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//TEC2014-51902-C2-1-R/ES/COMPONENTES INSPIRADOS EN METAMATERIALES PARA SENSADO AVANZADO DESDE LOS TERAHERCIOS HASTA EL OPTICO/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Comunicaciones - Departament de Comunicacions es_ES
dc.description.bibliographicCitation Rodríguez Fortuño, FJ.; Engheta, N.; Martínez Abietar, AJ.; Zayats, AV. (2015). Lateral forces on circularly polarizable particles near a surface. Nature Communications. 6(8799):1-7. https://doi.org/10.1038/ncomms9799 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/10.1038/ncomms9799 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 7 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 6 es_ES
dc.description.issue 8799 es_ES
dc.relation.senia 304249 es_ES
dc.identifier.pmid 26581479 en_EN
dc.identifier.pmcid PMC4673490 en_EN
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.contributor.funder Office of Naval Research es_ES
dc.contributor.funder Wolfson Foundation es_ES
dc.contributor.funder Royal Society, Reino Unido es_ES
dc.contributor.funder Engineering and Physical Sciences Research Council, Reino Unido es_ES
dc.description.references Novotny, L. & Hecht, B. Principles of Nano-Optics Cambridge University Press (2011). es_ES
dc.description.references Jackson, J. D. Classical Electrodynamics Wiley (1998). es_ES
dc.description.references Ashkin, A. & Dziedzic, J. M. Optical levitation by radiation pressure. Appl. Phys. Lett. 19, 283 (1971). es_ES
dc.description.references Ashkin, A. Acceleration and trapping of particles by radiation pressure. Phys. Rev. Lett. 24, 156–159 (1970). es_ES
dc.description.references Omori, R., Kobayashi, T. & Suzuki, A. Observation of a single-beam gradient-force optical trap for dielectric particles in air. Opt. Lett. 22, 816–818 (1997). es_ES
dc.description.references Ashkin, A., Dziedzic, J. M., Bjorkholm, J. E. & Chu, S. Observation of a single-beam gradient force optical trap for dielectric particles. Opt. Lett. 11, 288–290 (1986). es_ES
dc.description.references Ashkin, A., Dziedzic, J. M. & Yamane, T. Optical trapping and manipulation of single cells using infrared laser beams. Nature 330, 769–771 (1987). es_ES
dc.description.references Bagnato, V. S. et al. Continuous stopping and trapping of neutral atoms. Phys. Rev. Lett. 58, 2194–2197 (1987). es_ES
dc.description.references Phillips, W. D. Nobel lecture: laser cooling and trapping of neutral atoms. Rev. Mod. Phys. 70, 721–741 (1998). es_ES
dc.description.references Wang, M. M. et al. Microfluidic sorting of mammalian cells by optical force switching. Nat. Biotechnol. 23, 83–87 (2005). es_ES
dc.description.references Dholakia, K. & Čižmár, T. Shaping the future of manipulation. Nat. Photon. 5, 335–342 (2011). es_ES
dc.description.references Zhao, R., Zhou, J., Koschny, T., Economou, E. N. & Soukoulis, C. M. Repulsive Casimir force in chiral metamaterials. Phys. Rev. Lett. 103, 103602 (2009). es_ES
dc.description.references Leonhardt, U. & Philbin, T. G. Quantum levitation by left-handed metamaterials. New J. Phys. 9, 254–254 (2007). es_ES
dc.description.references Ginis, V., Tassin, P., Soukoulis, C. M. & Veretennicoff, I. Enhancing optical gradient forces with metamaterials. Phys. Rev. Lett. 110, 057401 (2013). es_ES
dc.description.references Rodríguez-Fortuño, F. J., Vakil, A. & Engheta, N. Electric levitation using ɛ-near-zero metamaterials. Phys. Rev. Lett. 112, 033902 (2014). es_ES
dc.description.references Grier, D. G. A revolution in optical manipulation. Nature 424, 810–816 (2003). es_ES
dc.description.references Yang, X., Liu, Y., Oulton, R. F., Yin, X. & Zhang, X. Optical forces in hybrid plasmonic waveguides. Nano Lett. 11, 321–328 (2011). es_ES
dc.description.references Oskooi, A., Favuzzi, P. A., Kawakami, Y. & Noda, S. Tailoring repulsive optical forces in nanophotonic waveguides. Opt. Lett. 36, 4638 (2011). es_ES
dc.description.references Shalin, A. S., Ginzburg, P., Belov, P. A., Kivshar, Y. S. & Zayats, A. V. Nano-opto-mechanical effects in plasmonic waveguides. Laser Photon. Rev. 8, 131–136 (2014). es_ES
dc.description.references Abajo, F. J. G., de, Brixner, T. & Pfeiffer, W. Nanoscale force manipulation in the vicinity of a metal nanostructure. J. Phys. B At. Mol. Opt. Phys. 40, S249–S258 (2007). es_ES
dc.description.references Juan, M. L., Righini, M. & Quidant, R. Plasmon nano-optical tweezers. Nat. Photon. 5, 349–356 (2011). es_ES
dc.description.references Beth, R. Mechanical detection and measurement of the angular momentum of light. Phys. Rev. 50, 115–125 (1936). es_ES
dc.description.references Padgett, M. & Bowman, R. Tweezers with a twist. Nat. Photon. 5, 343–348 (2011). es_ES
dc.description.references Liu, M., Zentgraf, T., Liu, Y., Bartal, G. & Zhang, X. Light-driven nanoscale plasmonic motors. Nat. Nanotechnol. 5, 570–573 (2010). es_ES
dc.description.references Marston, P. L. & Crichton, J. H. Radiation torque on a sphere caused by a circularly-polarized electromagnetic wave. Phys. Rev. A 30, 2508–2516 (1984). es_ES
dc.description.references Sokolov, I. V. The angular momentum of an electromagnetic wave, the Sadovski effect, and the generation of magnetic fields in a plasma. Phys. Uspekhi 34, 925–932 (1991). es_ES
dc.description.references Wang, S. B. & Chan, C. T. Lateral optical force on chiral particles near a surface. Nat. Commun. 5, 3307 (2014). es_ES
dc.description.references Hayat, A., Müller, J. P. B. & Capasso, F. Lateral chirality-sorting optical forces. doi:10.1073/pnas.1516704112 (2015). es_ES
dc.description.references Bliokh, K. Y., Bekshaev, A. Y. & Nori, F. Extraordinary momentum and spin in evanescent waves. Nat. Commun. 5, 3300 (2014). es_ES
dc.description.references Antognozzi, M. et al. Direct measurement of the extraordinary optical momentum using a nano-cantilever. Preprint at http://arxiv.org/abs/1506.04248 (2015). es_ES
dc.description.references Bekshaev, A. Y., Bliokh, K. Y. & Nori, F. Transverse spin and momentum in two-wave interference. Phys. Rev. X 5, 011039 (2015). es_ES
dc.description.references Bliokh, K. Y., Smirnova, D. & Nori, F. Quantum spin Hall effect of light. Science 348, 1448–1451 (2015). es_ES
dc.description.references Rodríguez-Fortuño, F. J. et al. Near-field interference for the unidirectional excitation of electromagnetic guided modes. Science 340, 328–330 (2013). es_ES
dc.description.references Kapitanova, P. V. et al. Photonic spin Hall effect in hyperbolic metamaterials for polarization-controlled routing of subwavelength modes. Nat. Commun. 5, 3226 (2014). es_ES
dc.description.references Bliokh, K. Y., Rodríguez-Fortuño, F. J., Nori, F. & Zayats, A. V. Spin-orbit interactions of light. Preprint at http://arxiv.org/abs/1505.02864 (2015). es_ES
dc.description.references O’Connor, D., Ginzburg, P., Rodríguez-Fortuño, F. J., Wurtz, G. A. & Zayats, A. V. Spin–orbit coupling in surface plasmon scattering by nanostructures. Nat. Commun. 5, 5327 (2014). es_ES
dc.description.references Neugebauer, M., Bauer, T., Banzer, P. & Leuchs, G. Polarization tailored light driven directional optical nanobeacon. Nano Lett. 14, 2546–2551 (2014). es_ES
dc.description.references Mueller, J. P. B. & Capasso, F. Asymmetric surface plasmon polariton emission by a dipole emitter near a metal surface. Phys. Rev. B 88, 121410 (2013). es_ES
dc.description.references Xi, Z. et al. Controllable directive radiation of a circularly polarized dipole above planar metal surface. Opt. Express 21, 30327 (2013). es_ES
dc.description.references Carbonell, J. et al. Directive excitation of guided electromagnetic waves through polarization control. Phys. Rev. B 89, 155121 (2014). es_ES
dc.description.references Young, A. B. et al. Polarization engineering in photonic crystal waveguides for spin-photon entanglers. Phys. Rev. Lett. 115, 153901 (2015). es_ES
dc.description.references Mitsch, R., Sayrin, C., Albrecht, B., Schneeweiss, P. & Rauschenbeutel, A. Quantum state-controlled directional spontaneous emission of photons into a nanophotonic waveguide. Nat. Commun. 5, 5713 (2014). es_ES
dc.description.references Le Kien, F. & Rauschenbeutel, A. Anisotropy in scattering of light from an atom into the guided modes of a nanofiber. Phys. Rev. A 90, 023805 (2014). es_ES
dc.description.references Luxmoore, I. J. et al. Interfacing spins in an InGaAs quantum dot to a semiconductor waveguide circuit using emitted photons. Phys. Rev. Lett. 110, 037402 (2013). es_ES
dc.description.references Rodríguez-Fortuño, F. J. et al. Universal method for the synthesis of arbitrary polarization states radiated by a nanoantenna. Laser Photon. Rev. 8, L27–L31 (2014). es_ES
dc.description.references Rodríguez-Fortuño, F. J., Barber-Sanz, I., Puerto, D., Griol, A. & Martinez, A. Resolving light handedness with an on-chip silicon microdisk. ACS Photon. 1, 762–767 (2014). es_ES
dc.description.references Petersen, J., Volz, J. & Rauschenbeutel, A. Chiral nanophotonic waveguide interface based on spin-orbit interaction of light. Science 346, 67–71 (2014). es_ES
dc.description.references Xi, Z., Lu, Y., Yu, W., Wang, P. & Ming, H. Unidirectional surface plasmon launcher: rotating dipole mimicked by optical antennas. J. Opt. 16, 105002 (2014). es_ES
dc.description.references Frisch, R. Experimental demonstration of Einstein’s radiation recoil. Zeitschrift für Phys. 86, 42–45 (1933). es_ES
dc.description.references Wylie, J. M. & Sipe, J. E. Quantum electrodynamics near an interface. II. Phys. Rev. A 32, 2030–2043 (1985). es_ES
dc.description.references Fichet, M., Schuller, F., Bloch, D. & Ducloy, M. van der Waals interactions between excited-state atoms and dispersive dielectric surfaces. Phys. Rev. A 51, 1553–1564 (1995). es_ES
dc.description.references Failache, H., Saltiel, S., Fichet, M., Bloch, D. & Ducloy, M. Resonant van der Waals repulsion between excited Cs atoms and sapphire surface. Phys. Rev. Lett. 83, 5467–5470 (1999). es_ES
dc.description.references Gordon, J. P. & Ashkin, A. Motion of atoms in a radiation trap. Phys. Rev. A 21, 1606–1617 (1980). es_ES
dc.description.references Chaumet, P. C. & Nieto-Vesperinas, M. Time-averaged total force on a dipolar sphere in an electromagnetic field. Opt. Lett. 25, 1065–1067 (2000). es_ES
dc.description.references Ishimaru, A. Electromagnetic Wave Propagation, Radiation, and Scattering Prentice Hall (1990). es_ES
dc.description.references Söllner, I., Mahmoodian, S., Javadi, A. & Lodahl, P. A chiral spin-photon interface for scalable on-chip quantum-information processing. Preprint at http://arxiv.org/abs/1406.4295 (2014). es_ES
dc.description.references Rotenberg, N. et al. Magnetic and electric response of single subwavelength holes. Phys. Rev. B Condens. Matter Mater. Phys. 88, 241408 (2013). es_ES
dc.description.references Sukhov, S., Kajorndejnukul, V. & Dogariu, A. Dynamic Consequences of Optical Spin-Orbit Interaction. Preprint at http://arxiv.org/abs/1504.01766 (2015). es_ES
dc.description.references Scheel, S., Buhmann, S. Y., Clausen, C. & Schneeweiss, P. Directional spontaneous emission and lateral Casimir-Polder force on an atom close to a nanofiber. Preprint at http://arxiv.org/abs/1505.01275 (2015). es_ES
dc.description.references Rodríguez-Fortuño, F. J., Engheta, N., Martínez, A. & Zayats, A. V. Lateral Forces Acting on Particles Near a Surface Under Circularly Polarized Illumination. in 5th Inte rnational Topical Meeting on Nanophotonics and Metamaterials (Nanometa) (2-914771-91-6, Seefeld, Austria 2015). es_ES
dc.description.references Bochenkov, V. et al. Applications of plasmonics: general discussion. Faraday Discuss. 178, 435–466 (2015). es_ES
dc.description.references Dogariu, A. & Schwartz, C. Conservation of angular momentum of light in single scattering. Opt. Express 14, 8425–8433 (2006). es_ES
dc.description.references Haefner, D., Sukhov, S. & Dogariu, A. Spin hall effect of light in spherical geometry. Phys. Rev. Lett. 102, 123903 (2009). es_ES
dc.description.references Bliokh, K. Y. et al. Spin-to-orbit angular momentum conversion in focusing, scattering, and imaging systems. Opt. Express 19, 26132–26149 (2011). es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem