- -

Search of dark matter annihilation in the galactic centre using the ANTARES neutrino telescope

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Search of dark matter annihilation in the galactic centre using the ANTARES neutrino telescope

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Adrián Martínez, Silvia es_ES
dc.contributor.author Albert, A. es_ES
dc.contributor.author André, M. es_ES
dc.contributor.author Anton, G es_ES
dc.contributor.author Ardid Ramírez, Miguel es_ES
dc.contributor.author Auberte, J.J. es_ES
dc.contributor.author Baret, B. es_ES
dc.contributor.author Barrios-Martí, J. es_ES
dc.contributor.author Basa, S. es_ES
dc.contributor.author Bertin, V. es_ES
dc.contributor.author Biagi, J. es_ES
dc.contributor.author Bogazzi, C. es_ES
dc.contributor.author Bou Cabo, Manuel es_ES
dc.contributor.author Herrero Debón, Alicia es_ES
dc.contributor.author Martínez Mora, Juan Antonio es_ES
dc.date.accessioned 2016-05-03T11:12:18Z
dc.date.available 2016-05-03T11:12:18Z
dc.date.issued 2015-10
dc.identifier.uri http://hdl.handle.net/10251/63409
dc.description.abstract A search for high-energy neutrinos coming from the direction of the Galactic Centre is performed using the data recorded by the ANTARES neutrino telescope from 2007 to 2012. The event selection criteria are chosen to maximise the sensitivity to possible signals produced by the self-annihilation of weakly interacting massive particles accumulated around the centre of the Milky Way with respect to the atmospheric background. After data unblinding, the number of neutrinos observed in the line of sight of the Galactic Centre is found to be compatible with background expectations. The 90% C.L. upper limits in terms of the neutrino+anti-neutrino flux, Φνµ+¯νµ , and the velocity averaged annihilation cross-section, hσAvi, are derived for the WIMP self-annihilation channels into bb¯,W+W−, τ +τ −, µ+µ −, νν¯. The ANTARES limits for hσAvi are shown to be the most stringent for a neutrino telescope over the WIMP masses 25 GeV < MWIMP < 10 TeV. es_ES
dc.description.sponsorship The authors acknowledge the financial support of the funding agencies: Centre National de la Recherche Scientifique (CNRS), Commissariat a l'enegie atomique et aux energies alternatives (CEA), Agence National de la Recherche (ANR), Commission Europeenne (FEDER fund and Marie Curie Program), Region Alsace (contrat CPER), Region Provence-Alpes-Cote d'Azur, Departement du Var and Ville de La Seyne-sur-Mer, France; Bundesministerium fur Bildung und Forschung (BMBF), Germany; Istituto Nazionale di Fisica Nucleare (INFN), Italy; Stichting voor Fundamenteel Onderzoek der Materie (FOM), Nederlandse organisatie voor Wetenschappelijk Onderzoek (NWO), the Netherlands; Council of the President of the Russian Federation for young scientists and leading scientific schools supporting grants, Russia; National Authority for Scientific Research (ANCS), Romania; Ministerio de Ciencia e Innovacion (MICINN), Prometeo of Generalitat Valenciana and MultiDark, Spain; Agence de l'Oriental and CNRST, Morocco. We also acknowledge the technical support of Ifremer, AIM and Foselev Marine for the sea operation and the CC-IN2P3 for the computing facilities. en_EN
dc.language Inglés es_ES
dc.publisher IOP Publishing: Hybrid Open Access es_ES
dc.relation.ispartof Journal of Cosmology and Astroparticle Physics es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Neutrino experiments es_ES
dc.subject Dark matter experiments es_ES
dc.subject Neutrino astronomy es_ES
dc.subject Detectors es_ES
dc.subject System es_ES
dc.subject Candidates es_ES
dc.subject Density es_ES
dc.subject Signals es_ES
dc.subject Limits es_ES
dc.subject Fermi es_ES
dc.subject Site es_ES
dc.subject Flux es_ES
dc.subject Sun es_ES
dc.subject.classification MATEMATICA APLICADA es_ES
dc.subject.classification FISICA APLICADA es_ES
dc.title Search of dark matter annihilation in the galactic centre using the ANTARES neutrino telescope es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1088/1475-7516/2015/10/068
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto de Investigación para la Gestión Integral de Zonas Costeras - Institut d'Investigació per a la Gestió Integral de Zones Costaneres es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Física Aplicada - Departament de Física Aplicada es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada es_ES
dc.description.bibliographicCitation Adrián Martínez, S.; Albert, A.; André, M.; Anton, G.; Ardid Ramírez, M.; Auberte, J.; Baret, B.... (2015). Search of dark matter annihilation in the galactic centre using the ANTARES neutrino telescope. Journal of Cosmology and Astroparticle Physics. 10(68):1-25. https://doi.org/10.1088/1475-7516/2015/10/068 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/10.1088/1475-7516/2015/10/068 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 25 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 10 es_ES
dc.description.issue 68 es_ES
dc.relation.senia 304139 es_ES
dc.identifier.eissn 1475-7516
dc.contributor.funder Centre National de la Recherche Scientifique, Francia es_ES
dc.contributor.funder Commissariat à l'Énergie Atomique et aux Énergies Alternatives, Francia es_ES
dc.contributor.funder National Authority for Scientific Research, Rumanía es_ES
dc.contributor.funder Agence Nationale de la Recherche, Francia es_ES
dc.contributor.funder Agence de l'Oriental, Marruecos es_ES
dc.contributor.funder Bundesministerium für Bildung und Forschung, Alemania es_ES
dc.contributor.funder Council on grants of the President of the Russian Federation es_ES
dc.contributor.funder Foundation for Fundamental Research on Matter, Holanda es_ES
dc.contributor.funder European Commission es_ES
dc.contributor.funder European Regional Development Fund es_ES
dc.contributor.funder Netherlands Organization for Scientific Research es_ES
dc.contributor.funder Département du Var and Ville de La Seyne-sur-Mer es_ES
dc.contributor.funder Instituto Nazionale di Fisica Nucleare es_ES
dc.contributor.funder Centre National pour la Recherche Scientifique et Technique, Marruecos es_ES
dc.contributor.funder Ministerio de Ciencia e Innovación es_ES
dc.contributor.funder Generalitat Valenciana
dc.description.references Bertone, G., Hooper, D., & Silk, J. (2005). Particle dark matter: evidence, candidates and constraints. Physics Reports, 405(5-6), 279-390. doi:10.1016/j.physrep.2004.08.031 es_ES
dc.description.references Schumann, M. (2014). Dark Matter 2013. Brazilian Journal of Physics, 44(5), 483-493. doi:10.1007/s13538-014-0222-x es_ES
dc.description.references Salati, P. (2014). Dark matter annihilation in the universe. International Journal of Modern Physics: Conference Series, 30, 1460256. doi:10.1142/s2010194514602567 es_ES
dc.description.references Beringer, J., Arguin, J.-F., Barnett, R. M., Copic, K., Dahl, O., Groom, D. E., … Wohl, C. G. (2012). Review of Particle Physics. Physical Review D, 86(1). doi:10.1103/physrevd.86.010001 es_ES
dc.description.references De Blok, W. J. G., McGaugh, S. S., Bosma, A., & Rubin, V. C. (2001). Mass Density Profiles of Low Surface Brightness Galaxies. The Astrophysical Journal, 552(1), L23-L26. doi:10.1086/320262 es_ES
dc.description.references Clowe, D., Bradač, M., Gonzalez, A. H., Markevitch, M., Randall, S. W., Jones, C., & Zaritsky, D. (2006). A Direct Empirical Proof of the Existence of Dark Matter. The Astrophysical Journal, 648(2), L109-L113. doi:10.1086/508162 es_ES
dc.description.references Komatsu, E., Smith, K. M., Dunkley, J., Bennett, C. L., Gold, B., Hinshaw, G., … Wright, E. L. (2011). SEVEN-YEARWILKINSON MICROWAVE ANISOTROPY PROBE(WMAP) OBSERVATIONS: COSMOLOGICAL INTERPRETATION. The Astrophysical Journal Supplement Series, 192(2), 18. doi:10.1088/0067-0049/192/2/18 es_ES
dc.description.references Ellis, J., Hagelin, J. S., Nanopoulos, D. V., Olive, K., & Srednicki, M. (1984). Supersymmetric relics from the big bang. Nuclear Physics B, 238(2), 453-476. doi:10.1016/0550-3213(84)90461-9 es_ES
dc.description.references Hooper, D., & Profumo, S. (2007). Dark matter and collider phenomenology of universal extra dimensions. Physics Reports, 453(2-4), 29-115. doi:10.1016/j.physrep.2007.09.003 es_ES
dc.description.references Gould, A. (1988). Direct and indirect capture of weakly interacting massive particles by the earth. The Astrophysical Journal, 328, 919. doi:10.1086/166347 es_ES
dc.description.references Gaisser, T. K., Steigman, G., & Tilav, S. (1986). Limits on cold-dark-matter candidates from deep underground detectors. Physical Review D, 34(8), 2206-2222. doi:10.1103/physrevd.34.2206 es_ES
dc.description.references Silk, J., Olive, K., & Srednicki, M. (1985). The photino, the sun, and high-energy neutrinos. Physical Review Letters, 55(2), 257-259. doi:10.1103/physrevlett.55.257 es_ES
dc.description.references Press, W. H., & Spergel, D. N. (1985). Capture by the sun of a galactic population of weakly interacting, massive particles. The Astrophysical Journal, 296, 679. doi:10.1086/163485 es_ES
dc.description.references Ageron, M., Aguilar, J. A., Al Samarai, I., Albert, A., Ameli, F., André, M., … Ardid, M. (2011). ANTARES: The first undersea neutrino telescope. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 656(1), 11-38. doi:10.1016/j.nima.2011.06.103 es_ES
dc.description.references Amram, P., Anghinolfi, M., Anvar, S., Ardellier-Desages, F. ., Aslanides, E., Aubert, J.-J., … Battaglieri, M. (2002). The ANTARES optical module. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 484(1-3), 369-383. doi:10.1016/s0168-9002(01)02026-5 es_ES
dc.description.references Aguilar, J. A., Albert, A., Ameli, F., Amram, P., Anghinolfi, M., Anton, G., … Aubert, J.-J. (2005). Study of large hemispherical photomultiplier tubes for the ANTARES neutrino telescope. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 555(1-2), 132-141. doi:10.1016/j.nima.2005.09.035 es_ES
dc.description.references Aguilar, J. A., Al Samarai, I., Albert, A., Anghinolfi, M., Anton, G., Anvar, S., … Aubert, J.-J. (2010). Performance of the front-end electronics of the ANTARES neutrino telescope. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 622(1), 59-73. doi:10.1016/j.nima.2010.06.225 es_ES
dc.description.references Aguilar, J. A., Albert, A., Ameli, F., Anghinolfi, M., Anton, G., Anvar, S., … Basa, S. (2007). The data acquisition system for the ANTARES neutrino telescope. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 570(1), 107-116. doi:10.1016/j.nima.2006.09.098 es_ES
dc.description.references Amram, P., Anghinolfi, M., Anvar, S., Ardellier-Desages, F. ., Aslanides, E., Aubert, J.-J., … Battaglieri, M. (2003). Sedimentation and fouling of optical surfaces at the ANTARES site. Astroparticle Physics, 19(2), 253-267. doi:10.1016/s0927-6505(02)00202-5 es_ES
dc.description.references Aguilar, J. A., Al Samarai, I., Albert, A., Anghinolfi, M., Anton, G., Anvar, S., … Aubert, J.-J. (2011). AMADEUS—The acoustic neutrino detection test system of the ANTARES deep-sea neutrino telescope. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 626-627, 128-143. doi:10.1016/j.nima.2010.09.053 es_ES
dc.description.references Aguilar, J. A., Albert, A., Ameli, F., Anghinolfi, M., Anton, G., Anvar, S., … Basa, S. (2006). First results of the Instrumentation Line for the deep-sea ANTARES neutrino telescope. Astroparticle Physics, 26(4-5), 314-324. doi:10.1016/j.astropartphys.2006.07.004 es_ES
dc.description.references Adrián-Martínez, S., Ageron, M., Aguilar, J. A., Samarai, I. A., Albert, A., André, M., … Ardid, M. (2012). The positioning system of the ANTARES Neutrino Telescope. Journal of Instrumentation, 7(08), T08002-T08002. doi:10.1088/1748-0221/7/08/t08002 es_ES
dc.description.references Ageron, M., Aguilar, J. A., Albert, A., Ameli, F., Anghinolfi, M., Anton, G., … Aubert, J.-J. (2007). The ANTARES optical beacon system. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 578(3), 498-509. doi:10.1016/j.nima.2007.05.325 es_ES
dc.description.references Aguilar, J. A., Al Samarai, I., Albert, A., André, M., Anghinolfi, M., Anton, G., … Astraatmadja, T. (2011). Time calibration of the ANTARES neutrino telescope. Astroparticle Physics, 34(7), 539-549. doi:10.1016/j.astropartphys.2010.12.004 es_ES
dc.description.references Aguilar, J. A., Samarai, I. A., Albert, A., André, M., Anghinolfi, M., Anton, G., … Astraatmadja, T. (2011). Search for a diffuse flux of high-energy <mml:math altimg=«si1.gif» overflow=«scroll» xmlns:xocs=«http://www.elsevier.com/xml/xocs/dtd» xmlns:xs=«http://www.w3.org/2001/XMLSchema» xmlns:xsi=«http://www.w3.org/2001/XMLSchema-instance» xmlns=«http://www.elsevier.com/xml/ja/dtd» xmlns:ja=«http://www.elsevier.com/xml/ja/dtd» xmlns:mml=«http://www.w3.org/1998/Math/MathML» xmlns:tb=«http://www.elsevier.com/xml/common/table/dtd» xmlns:sb=«http://www.elsevier.com/xml/common/struct-bib/dtd» xmlns:ce=«http://www.elsevier.com/xml/common/dtd» xmlns:xlink=«http://www.w3.org/1999/xlink» xmlns:cals=«http://www.elsevier.com/xml/common/cals/dtd»><mml:msub><mml:mi>ν</mml:mi><mml:mi>μ</mml:mi></mml:msub></mml:math> with the ANTARES neutrino telescope. Physics Letters B, 696(1-2), 16-22. doi:10.1016/j.physletb.2010.11.070 es_ES
dc.description.references Adrián-Martínez, S., Aguilar, J. A., Al Samarai, I., Albert, A., André, M., Anghinolfi, M., … Assis Jesus, A. C. (2012). Search for relativistic magnetic monopoles with the ANTARES neutrino telescope. Astroparticle Physics, 35(10), 634-640. doi:10.1016/j.astropartphys.2012.02.007 es_ES
dc.description.references Adrián-Martínez, S., Al Samarai, I., Albert, A., André, M., Anghinolfi, M., Anton, G., … Aubert, J.-J. (2012). Measurement of atmospheric neutrino oscillations with the ANTARES neutrino telescope. Physics Letters B, 714(2-5), 224-230. doi:10.1016/j.physletb.2012.07.002 es_ES
dc.description.references Adrián-Martínez, S., Al Samarai, I., Albert, A., André, M., Anghinolfi, M., Anton, G., … Aubert, J.-J. (2012). SEARCH FOR COSMIC NEUTRINO POINT SOURCES WITH FOUR YEARS OF DATA FROM THE ANTARES TELESCOPE. The Astrophysical Journal, 760(1), 53. doi:10.1088/0004-637x/760/1/53 es_ES
dc.description.references Adrián-Martínez, S., Albert, A., Al Samarai, I., André, M., Anghinolfi, M., Anton, G., … Aubert, J.-J. (2013). Search for muon neutrinos from gamma-ray bursts with the ANTARES neutrino telescope using 2008 to 2011 data. Astronomy & Astrophysics, 559, A9. doi:10.1051/0004-6361/201322169 es_ES
dc.description.references Adrián-Martínez, S., Albert, A., Al Samarai, I., André, M., Anghinolfi, M., Anton, G., … Aubert, J.-J. (2013). Measurement of the atmospheric ν μ energy spectrum from 100 GeV to 200 TeV with the ANTARES telescope. The European Physical Journal C, 73(10). doi:10.1140/epjc/s10052-013-2606-4 es_ES
dc.description.references Adrián-Martínez, S., Albert, A., Al Samarai, I., André, M., Anton, G., … Aubert, J.-J. (2014). A search for neutrino emission from the Fermi bubbles with the ANTARES telescope. The European Physical Journal C, 74(2). doi:10.1140/epjc/s10052-013-2701-6 es_ES
dc.description.references Adrián-Martínez, S., Albert, A., André, M., Anghinolfi, M., Anton, G., Ardid, M., … Basa, S. (2014). SEARCHES FOR POINT-LIKE AND EXTENDED NEUTRINO SOURCES CLOSE TO THE GALACTIC CENTER USING THE ANTARES NEUTRINO TELESCOPE. The Astrophysical Journal, 786(1), L5. doi:10.1088/2041-8205/786/1/l5 es_ES
dc.description.references Aguilar, J. A., Al Samarai, I., Albert, A., André, M., Anghinolfi, M., Anton, G., … Astraatmadja, T. (2011). A fast algorithm for muon track reconstruction and its application to the ANTARES neutrino telescope. Astroparticle Physics, 34(9), 652-662. doi:10.1016/j.astropartphys.2011.01.003 es_ES
dc.description.references Cirelli, M., Corcella, G., Hektor, A., Hütsi, G., Kadastik, M., Panci, P., … Strumia, A. (2011). PPPC 4 DM ID: a poor particle physicist cookbook for dark matter indirect detection. Journal of Cosmology and Astroparticle Physics, 2011(03), 051-051. doi:10.1088/1475-7516/2011/03/051 es_ES
dc.description.references Bellini, G., Ludhova, L., Ranucci, G., & Villante, F. L. (2014). Neutrino Oscillations. Advances in High Energy Physics, 2014, 1-28. doi:10.1155/2014/191960 es_ES
dc.description.references Carminati, G., Bazzotti, M., Margiotta, A., & Spurio, M. (2008). Atmospheric MUons from PArametric formulas: a fast GEnerator for neutrino telescopes (MUPAGE). Computer Physics Communications, 179(12), 915-923. doi:10.1016/j.cpc.2008.07.014 es_ES
dc.description.references Bazzotti, M., Carminati, G., Margiotta, A., & Spurio, M. (2010). An update of the generator of atmospheric muons from parametric formulas (MUPAGE). Computer Physics Communications, 181(4), 835-836. doi:10.1016/j.cpc.2009.12.017 es_ES
dc.description.references Barr, G., Gaisser, T. K., & Stanev, T. (1989). Flux of atmospheric neutrinos. Physical Review D, 39(11), 3532-3534. doi:10.1103/physrevd.39.3532 es_ES
dc.description.references Agrawal, V., Gaisser, T. K., Lipari, P., & Stanev, T. (1996). Atmospheric neutrino flux above 1 GeV. Physical Review D, 53(3), 1314-1323. doi:10.1103/physrevd.53.1314 es_ES
dc.description.references Margiotta, A. (2013). Common simulation tools for large volume neutrino detectors. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 725, 98-101. doi:10.1016/j.nima.2012.11.172 es_ES
dc.description.references Aguilar, J. A., Albert, A., Amram, P., Anghinolfi, M., Anton, G., Anvar, S., … Azoulay, R. (2005). Transmission of light in deep sea water at the site of the Antares neutrino telescope. Astroparticle Physics, 23(1), 131-155. doi:10.1016/j.astropartphys.2004.11.006 es_ES
dc.description.references Hill, G. C., & Rawlins, K. (2003). Unbiased cut selection for optimal upper limits in neutrino detectors: the model rejection potential technique. Astroparticle Physics, 19(3), 393-402. doi:10.1016/s0927-6505(02)00240-2 es_ES
dc.description.references Feldman, G. J., & Cousins, R. D. (1998). Unified approach to the classical statistical analysis of small signals. Physical Review D, 57(7), 3873-3889. doi:10.1103/physrevd.57.3873 es_ES
dc.description.references Navarro, J. F., Frenk, C. S., & White, S. D. M. (1996). The Structure of Cold Dark Matter Halos. The Astrophysical Journal, 462, 563. doi:10.1086/177173 es_ES
dc.description.references Catena, R., & Ullio, P. (2010). A novel determination of the local dark matter density. Journal of Cosmology and Astroparticle Physics, 2010(08), 004-004. doi:10.1088/1475-7516/2010/08/004 es_ES
dc.description.references Salucci, P., Nesti, F., Gentile, G., & Frigerio Martins, C. (2010). The dark matter density at the Sun’s location. Astronomy & Astrophysics, 523, A83. doi:10.1051/0004-6361/201014385 es_ES
dc.description.references Charbonnier, A., Combet, C., & Maurin, D. (2012). clumpy: A code for γ-ray signals from dark matter structures. Computer Physics Communications, 183(3), 656-668. doi:10.1016/j.cpc.2011.10.017 es_ES
dc.description.references Aartsen, M. G., Abraham, K., Ackermann, M., Adams, J., Aguilar, J. A., Ahlers, M., … Archinger, M. (2015). Search for dark matter annihilation in the Galactic Center with IceCube-79. The European Physical Journal C, 75(10). doi:10.1140/epjc/s10052-015-3713-1 es_ES
dc.description.references Aartsen, M. G., Abbasi, R., Abdou, Y., Ackermann, M., Adams, J., Aguilar, J. A., … Bai, X. (2013). IceCube search for dark matter annihilation in nearby galaxies and galaxy clusters. Physical Review D, 88(12). doi:10.1103/physrevd.88.122001 es_ES
dc.description.references Aleksić, J., Ansoldi, S., Antonelli, L. A., Antoranz, P., Babic, A., Bangale, P., … Bednarek, W. (2014). Optimized dark matter searches in deep observations of Segue 1 with MAGIC. Journal of Cosmology and Astroparticle Physics, 2014(02), 008-008. doi:10.1088/1475-7516/2014/02/008 es_ES
dc.description.references Meade, P., Papucci, M., Strumia, A., & Volansky, T. (2010). Dark Matter interpretations of the excesses after FERMI. Nuclear Physics B, 831(1-2), 178-203. doi:10.1016/j.nuclphysb.2010.01.012 es_ES
dc.description.references Steigman, G., Dasgupta, B., & Beacom, J. F. (2012). Precise relic WIMP abundance and its impact on searches for dark matter annihilation. Physical Review D, 86(2). doi:10.1103/physrevd.86.023506 es_ES
dc.description.references Tegenfeldt, F., & Conrad, J. (2005). On Bayesian treatment of systematic uncertainties in confidence interval calculation. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 539(1-2), 407-413. doi:10.1016/j.nima.2004.09.037 es_ES
dc.description.references Conrad, J., Botner, O., Hallgren, A., & Pérez de los Heros, C. (2003). Including systematic uncertainties in confidence interval construction for Poisson statistics. Physical Review D, 67(1). doi:10.1103/physrevd.67.012002 es_ES
dc.description.references Navarro, J. F., Ludlow, A., Springel, V., Wang, J., Vogelsberger, M., White, S. D. M., … Helmi, A. (2009). The diversity and similarity of simulated cold dark matter haloes. Monthly Notices of the Royal Astronomical Society, 402(1), 21-34. doi:10.1111/j.1365-2966.2009.15878.x es_ES
dc.description.references Bahcall, J. N., & Soneira, R. M. (1980). The universe at faint magnitudes. I - Models for the galaxy and the predicted star counts. The Astrophysical Journal Supplement Series, 44, 73. doi:10.1086/190685 es_ES
dc.description.references Gustafsson, M., Fairbairn, M., & Sommer-Larsen, J. (2006). Baryonic pinching of galactic dark matter halos. Physical Review D, 74(12). doi:10.1103/physrevd.74.123522 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem