- -

A severe symptom phenotype in pepper cultivars carrying the Tsw resistance gene is caused by a mixed infection between resistance-breaking and non-resistance-breaking isolates of Tomato spotted wilt virus

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

A severe symptom phenotype in pepper cultivars carrying the Tsw resistance gene is caused by a mixed infection between resistance-breaking and non-resistance-breaking isolates of Tomato spotted wilt virus

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author ARAMBURU, José es_ES
dc.contributor.author Galipienso Torregrosa, Luis es_ES
dc.contributor.author Soler Aleixandre, Salvador es_ES
dc.contributor.author Rubio Miguelez, Luis es_ES
dc.contributor.author López Del Rincón, Carmelo es_ES
dc.date.accessioned 2016-05-03T12:13:44Z
dc.date.available 2016-05-03T12:13:44Z
dc.date.issued 2015-11
dc.identifier.issn 0334-2123
dc.identifier.uri http://hdl.handle.net/10251/63431
dc.description.abstract [EN] Pepper (Capsicum annuum) plants with the Tsw resistance gene showing unusually severe symptoms consisting of local lesions, chlorosis, stunting and systemic necrosis on the apical leaves were found in a commercial field in north eastern Spain in 2009. The presence of Tomato spotted wilt virus (TSWV) was confirmed in all diseased plants. After mechanical inoculation of Nicotiana glutinosa with infected field samples, biological clones of the virus were isolated from individual local lesions. These biological clones produced two different types of symptoms after inoculation on Tsw resistant pepper plants: (i) typical symptoms caused by resistance-breaking (RB) isolates characterized by chlorosis and stunting, and (ii) severe symptoms as observed in the field plants. Similar symptoms in pepper plants carrying the Tsw resistance gene were reproduced under controlled conditions, after simultaneous inoculation of RB and non-resistance-breaking (NRB) isolates. The NRB isolate was detected in a low proportion in the apical uninoculated leaves, whereas NRB isolates could not infect resistant pepper when inoculated alone. Co-infection by NRB and RB isolates induced disease synergism with systemic necrosis on the apical leaves. To our knowledge, this is the first case in which a synergic interaction between isolates of the same virus has been described, which has the ability to overcome a natural genetic resistance. This finding could have epidemiological implications for the management of TSWV es_ES
dc.description.sponsorship We thank M. Matas for locating commercial crops of pepper carrying the Tsw gene infected with TSWV and F. Aparicio for his excellent review of the manuscript. This research was supported by grants RTA2008-00010-C03 and RTA2013-00047-C02 from the Instituto Nacional de Investigaciones Agrarias (INIA).
dc.language Inglés es_ES
dc.publisher Springer Verlag (Germany) es_ES
dc.relation.ispartof Phytoparasitica es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Epidemiology es_ES
dc.subject Hypersensitive Response es_ES
dc.subject Tsw es_ES
dc.subject TSWV es_ES
dc.subject Tospovirus es_ES
dc.title A severe symptom phenotype in pepper cultivars carrying the Tsw resistance gene is caused by a mixed infection between resistance-breaking and non-resistance-breaking isolates of Tomato spotted wilt virus es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1007/s12600-015-0482-1
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//RTA2008-00010-C03-03/ES/Estudio de los determinantes genéticos de TSWV implicados en la superación de las resistencias de tomate y pimiento. Desarrollo de nuevas variedades resistentes/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//RTA2008-00010-C03-01/ES/Diversidad genética y factores evolutivos y epidemiológicos implicados en los aislados españoles de TSWV que superan las resistencias genéticas Sw-5 de tomate y Tsw de pimiento/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//RTA2008-00010-C03-02/ES/Caracterización de aislados del virus del bronceado (TSWV) que sobrepasan la resistencia del gen Tsw en pimiento. Puesta a punto de la utilización de RNA de interferencia como método de control/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//RTA2013-00047-C02-02/ES/Búsqueda de nuevas fuentes de resistencia y desarrollo de microRNAs artificiales para el control del virus del bronceado del tomate (TSWV)/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//RTA2013-00047-C02-01/ES/Estudio de los factores implicados en la infección viral y su aplicación al control de la enfermedad/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario de Conservación y Mejora de la Agrodiversidad Valenciana - Institut Universitari de Conservació i Millora de l'Agrodiversitat Valenciana es_ES
dc.description.bibliographicCitation Aramburu, J.; Galipienso Torregrosa, L.; Soler Aleixandre, S.; Rubio Miguelez, L.; López Del Rincón, C. (2015). A severe symptom phenotype in pepper cultivars carrying the Tsw resistance gene is caused by a mixed infection between resistance-breaking and non-resistance-breaking isolates of Tomato spotted wilt virus. Phytoparasitica. 43:597-605. https://doi.org/10.1007/s12600-015-0482-1 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://dx.doi.org/10.1007/s12600-015-0482-1 es_ES
dc.description.upvformatpinicio 597 es_ES
dc.description.upvformatpfin 605 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 43 es_ES
dc.relation.senia 297611 es_ES
dc.identifier.eissn 1876-7184
dc.contributor.funder Ministerio de Ciencia e Innovación
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.description.references Aramburu, J., Galipienso, L., Soler, S., & López, C. (2010). Characterization of Tomato spotted wilt virus isolates that overcome the Sw-5 resistance gene in tomato and fitness assays. Phytopathologia Mediterranea, 49, 342–351. es_ES
dc.description.references Black, L. L., Hobbs, H. A., & Gatti, J. M., Jr. (1991). Tomato spotted wilt virus resistance in Capsicum chinense PI-152225 and PI-159236. Plant Disease, 75, 863. es_ES
dc.description.references Black, L. L., Hobbs, H. A., & Kammerlohr, D. S. (1996). Resistance of Capsicum chinense lines to Tomato spotted wilt virus from Louisiana, USA, and inheritance of resistance. Acta Horticulturae, 431, 393–401. es_ES
dc.description.references Boiteux, L. S., & de Ávila, A. C. (1994). Inheritance of a resistance specific to Tomato spotted wilt tospovirus in Capsicum chinense ‘PI 159236’. Euphytica, 75, 139–142. es_ES
dc.description.references Clark, M. F., & Adams, A. N. (1977). Characteristic of the microplate method of enzyme-linked immunosorbent assay for the detection of plant viruses. Journal of General Virology, 34, 475–483. es_ES
dc.description.references de Haan, P., Wagemakers, L., Peters, D., & Goldbach, R. (1990). The S RNA segment of Tomato spotted wilt virus has an ambisense character. Journal of General Virology, 71, 1001–1007. es_ES
dc.description.references de Haan, P., Kormelink, R., Resende, R. O., van Poelwijk, F., Peters, D., & Goldbach, R. (1991). Tomato spotted wilt virus L RNA encodes a putative RNA polymerase. Journal of General Virology, 72, 2207–2216. es_ES
dc.description.references de Ronde, D., Butterbach, P., Lohuis, D., Heild, M., van Lent, J. W. M., & Kormelink, R. (2013). Tsw gene-based resistance is triggered by a functional RNA silencing suppressor protein of the Tomato spotted wilt virus. Molecular Plant Pathology, 14, 405–415. es_ES
dc.description.references de Ronde, D., Pasquier, A., Ying, S., Butterbach, P., Lohuis, D., & Kormelink, R. (2014). Analysis of Tomato spotted wilt virus NSs protein indicates the importance of the N-terminal domain for avirulence and RNA silencing suppression. Molecular Plant Pathology, 15, 185–195. es_ES
dc.description.references García-Cano, E., Resende, R. O., Fernández-Muñoz, R., & Moriones, E. (2006). Synergistic interaction between Tomato chlorosis virus and Tomato spotted wilt virus results in breakdown of resistance in tomato. Phytopathology, 96, 1263–1269. es_ES
dc.description.references Gil, R., & Luis, M. (1994). Should hypersensitive resistance to Tomato spotted wilt virus (TSWV) be used in breeding programs? Capsicum Eggplant Newsletter, 13, 88–89. es_ES
dc.description.references Hanssen, I. M., Lapidot, M., & Thomma, B. P. H. J. (2010). Emerging viral diseases of tomato crops. Molecular Plant Microbe Interactions, 23, 539–548. es_ES
dc.description.references Jahn, M., Paran, I., Hoffmann, K., Radwanski, E. R., Livingstone, K. D., Grube, R. C., Aftergoot, E., Lapidot, M., & Moyer, M. (2000). Genetic mapping of the Tsw locus for resistance to the tospovirus Tomato spotted wilt virus in Capsicum spp. and its relationship to the Sw-5 gene for resistance to the same pathogen in tomato. Molecular Plant Microbe Interactions, 13, 673–682. es_ES
dc.description.references Li, W., Lewandowski, D. J., Hilf, M. E., & Adkins, S. (2009). Identification of domains of the Tomato spotted wilt virus NSm protein involved in tubule formation, movement and symptomatology. Virology, 390, 110–121. es_ES
dc.description.references López, C., Aramburu, J., Galipienso, L., Soler, S., Nuez, F., & Rubio, L. (2011). Evolutionary analysis of tomato Sw-5 resistance breaking isolates of Tomato spotted wilt virus. Journal of General Virology, 92, 210–215. es_ES
dc.description.references Lovato, F. A., Inoue-Nagata, A. K., Nagata, T., de Avila, A. C., Pereira, L. A., & Resende, R. O. (2008). The N protein of Tomato spotted wilt virus (TSWV) is associated with the induction of programmed cell death (PCD) in Capsicum chinense plants, a hypersensitive host to TSWV infection. Virus Research, 137, 245–252. es_ES
dc.description.references Margaria, P., Ciuffo, M., & Turina, M. (2004). Resistance breaking strain of Tomato spotted wilt virus (Tospovirus; Bunyaviridae) on resistant pepper cultivars in Almeria, Spain. Plant Pathology, 53, 795. es_ES
dc.description.references Margaria, P., Ciuffo, M., Pacifico, D., & Turina, M. (2007). Evidence that the nonstructural protein of Tomato spotted wilt virus is the avirulence determinant in the interaction with resistant pepper carrying the Tsw gene. Molecular Plant Microbe Interactions, 20, 547–558. es_ES
dc.description.references Moury, B., Palloix, A., Selassie-Gebre, K., & Marchoux, G. (1997). Hypersensitive resistance to Tomato spotted wilt virus in three Capsicum chinense accessions is controlled by a single gene and is overcome by virulent strains. Euphytica, 94, 45–52. es_ES
dc.description.references Moury, B., Selassie, K. G., Marchoux, G., Daubeze, A. M., & Palloix, A. (1998). High temperature effects on hypersensitive resistance to Tomato spotted wilt Tospovirus (TSWV) in pepper (Capsicum chinense Jacq.). European Journal of Plant Pathology, 104, 489–498. es_ES
dc.description.references Murphy, J. F., & Bowen, K. L. (2006). Synergistic disease in pepper caused by the mixed infection of Cucumber mosaic virus and Pepper mottle virus. Phytopathology, 96, 240–247. es_ES
dc.description.references Naidu, R. A., Sherwood, J. L., & Deom, C. M. (2008). Characterization of a vector-non-transmissible isolate of Tomato spotted wilt virus. Plant Pathology, 57, 190–200. es_ES
dc.description.references Pappu, H. R., Jones, R. A. C., & Jain, R. K. (2009). Global status of tospovirus epidemics in diverse cropping systems: successes achieved and challenges ahead. Virus Research, 141, 219–236. es_ES
dc.description.references Parrella, G., Gognalons, P., Gebre-Selassie, K., Vovlas, C., & Marchoux, G. (2003). An update of the host range of Tomato spotted wilt virus. Journal of Plant Pathology, 85, 227–264. es_ES
dc.description.references Persley, D. M., Thomas, J. E., & Sharman, M. (2006). Tospoviruses - an Australian perspective. Australasian Plant Pathology, 35, 161–180. es_ES
dc.description.references Prins, M., & Goldbach, R. (1998). The emerging problem of tospovirus infection and nonconventional methods of control. Trends in Microbiology, 6, 31–35. es_ES
dc.description.references Qiu, W., & Moyer, J. W. (1999). Tomato spotted wilt tospovirus adapts to the TSWV N gene-derived resistance by genome reassortment. Phytopathology, 89, 575–582. es_ES
dc.description.references Roggero, P., Lisa, V., Nervo, G., & Pennazio, S. (1996). Continuous high temperature can break the hypersensitivity of Capsicum chinense ‘PI152225’ to Tomato spotted wilt tospovirus (TSWV). Phytopathologia Mediterranea, 35, 117–120. es_ES
dc.description.references Roggero, P., Masenga, V., & Tavella, L. (2002). Field isolates of Tomato spotted wilt virus overcoming resistance in pepper and their spread to other hosts in Italy. Plant Disease, 86, 950–954. es_ES
dc.description.references Scholthof, K. B. G., Adkins, S., Czosnek, H., Palukaitis, P., Jacquot, E., Hohn, T., Hohn, B., Saunders, K., Candresse, T., Ahlquist, P., Hemenway, C., & Foster, G. D. (2011). Top 10 plant viruses in molecular plant pathology. Molecular Plant Pathology, 12, 938–954. es_ES
dc.description.references Sin, S. H., McNulty, B. C., Kennedy, G. G., & Moyer, J. W. (2005). Viral genetic determinants for thrips transmissión of Tomato spotted wilt virus. Proceedings of the National Academy of Sciences of the United States of America, 102, 5168–5173. es_ES
dc.description.references Soler, S., Díez, M. J., & Nuez, F. (1998). Effect of temperature and growth stage interaction on pattern of virus presence in TSWV-resistance accessions of Capsicum chinense. Plant Disease, 82, 1199–1204. es_ES
dc.description.references Soler, S., Díez, M. J., Roselló, S., & Nuez, F. (1999). Movement and distribution of Tomato spotted wilt virus in resistant and susceptible accessions of Capsicum spp. Canadian Journal of Plant Pathology, 21, 317–323. es_ES
dc.description.references Stevens, M. R., Scott, S. J., & Gergerich, R. C. (1992). Inheritance of a gene for resistance to Tomato spotted wilt virus from Lycopersicon peruvianum Mill. Euphytica, 59, 9–17. es_ES
dc.description.references Syller, J. (2012). Facilitative and antagonistic interactions between plant viruses in mixed infections. Molecular Plant Pathology, 13, 204–216. es_ES
dc.description.references Takeda, A., Sugiyama, K., Nagano, H., Mori, M., Kaido, M., Mise, K., Tsuda, S., & Okuno, T. (2002). Identification of a novel RNA silencing suppressor, NSs protein of Tomato spotted wilt virus. FEBS Letters, 532, 75–79. es_ES
dc.description.references Tentchev, D., Verdin, E., Marchal, C., Jacquet, M., Aguilar, J. M., & Moury, B. (2011). Evolution and structure of Tomato spotted wilt virus populations: evidence of extensive reassortment and insights into emergence processes. Journal of General Virology, 92, 961–973. es_ES
dc.description.references Thomas-Carroll, M. L., & Jones, R. A. C. (2003). Selection, biological properties and fitness of resistance-breaking strain of Tomato spotted wilt virus in pepper. Annals of Applied Biology, 142, 235–243. es_ES
dc.description.references Turina, M., Tavella, L., & Ciuffo, M. (2012). Tospoviruses in the mediterranean area. Advances in Virus Research, 84, 403–437. es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem