- -

Tobacco etch virus protein P1 traffics to the nucleolus and associates with the host 60S ribosomal subunits during infection

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Tobacco etch virus protein P1 traffics to the nucleolus and associates with the host 60S ribosomal subunits during infection

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Martínez, Fernando es_ES
dc.contributor.author Daros Arnau, Jose Antonio es_ES
dc.date.accessioned 2016-05-04T07:38:01Z
dc.date.available 2016-05-04T07:38:01Z
dc.date.issued 2014-09
dc.identifier.issn 0022-538X
dc.identifier.uri http://hdl.handle.net/10251/63483
dc.description.abstract [EN] The genus Potyvirus comprises a large group of positive-strand RNA plant viruses whose genome encodes a large polyprotein processed by three viral proteinases. P1 protein, the most amino-terminal product of the polyprotein, is an accessory factor stimulating viral genome amplification whose role during infection is not well understood. We infected plants with Tobacco etch virus (TEV; genus Potyvirus) clones in which P1 was tagged with a fluorescent protein to track its expression and subcellular localization or with an affinity tag to identify host proteins involved in complexes in which P1 also takes part during infection. Our results showed that TEV P1 exclusively accumulates in infected cells at an early stage of infection and that the protein displays a dynamic subcellular localization, trafficking in and out of the nucleus and nucleolus during infection. Inside the nucleolus, P1 particularly targets the dense granular component. Consistently, we found functional nucleolar localization and nuclear export signals in TEV P1 sequence. Our results also indicated that TEV P1 physically interacts with the host 80S cytoplasmic ribosomes and specifically binds to the 60S ribosomal subunits during infection. In vitro translation assays of reporter proteins suggested that TEV P1 stimulates protein translation, particularly when driven from the TEV internal ribosome entry site. These in vitro assays also suggested that TEV helper-component proteinase (HC-Pro) inhibits protein translation. Based on these findings, we propose that TEV P1 stimulates translation of viral proteins in infected cells. IMPORTANCE In this work, we researched the role during infection of tobacco etch virus P1 protease. P1 is the most mysterious protein of potyviruses, a relevant group of RNA viruses infecting plants. Our experiments showed that the viral P1 protein exclusively accumulates in infected cells at an early stage of infection and moves in and out of the nucleus of infected cells, particularly targeting the nucleolus. Our experiments also showed that P1 protein binds host ribosomes during infection. Based on these findings and other in vitro experiments we propose that P1 protein stimulates translation of viral proteins during infection es_ES
dc.description.sponsorship This work was supported by grant BIO2011-26741 from the Spanish Ministerio de Economia y Competitividad. F.M. was the recipient of a predoctoral fellowship from Universidad Politecnica de Valencia. en_EN
dc.language Inglés es_ES
dc.publisher American Society for Microbiology es_ES
dc.relation.ispartof Journal of Virology es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject HELPER-COMPONENT PROTEINASE es_ES
dc.subject CAP-INDEPENDENT TRANSLATION es_ES
dc.subject CAULIFLOWER-MOSAIC-VIRUS es_ES
dc.subject DEPENDENT RNA-POLYMERASE es_ES
dc.subject FAMILY POTYVIRIDAE es_ES
dc.subject COAT PROTEIN es_ES
dc.subject ARABIDOPSIS-THALIANA es_ES
dc.subject NUCLEAR EXPORT es_ES
dc.subject N-TERMINUS es_ES
dc.subject 5' LEADER es_ES
dc.title Tobacco etch virus protein P1 traffics to the nucleolus and associates with the host 60S ribosomal subunits during infection es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1128/JVI.00928-14
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//BIO2011-26741/ES/PATOGENOS DE RNA DE PLANTAS: INTERACCION CON EL HUESPED Y DESARROLLO DE HERRAMIENTAS BIOTECNOLOGICAS/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario Mixto de Biología Molecular y Celular de Plantas - Institut Universitari Mixt de Biologia Molecular i Cel·lular de Plantes es_ES
dc.description.bibliographicCitation Martínez, F.; Daros Arnau, JA. (2014). Tobacco etch virus protein P1 traffics to the nucleolus and associates with the host 60S ribosomal subunits during infection. Journal of Virology. 88(18):10725-10737. https://doi.org/10.1128/JVI.00928-14 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://dx.doi.org/10.1128/JVI.00928-14 es_ES
dc.description.upvformatpinicio 10725 es_ES
dc.description.upvformatpfin 10737 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 88 es_ES
dc.description.issue 18 es_ES
dc.relation.senia 285408 es_ES
dc.identifier.eissn 1098-5514
dc.identifier.pmcid PMC4178839 en_EN
dc.contributor.funder Ministerio de Ciencia e Innovación es_ES
dc.contributor.funder Universitat Politècnica de València es_ES
dc.description.references Riechmann, J. L., Lain, S., & Garcia, J. A. (1992). Highlights and prospects of potyvirus molecular biology. Journal of General Virology, 73(1), 1-16. doi:10.1099/0022-1317-73-1-1 es_ES
dc.description.references Chung, B. Y.-W., Miller, W. A., Atkins, J. F., & Firth, A. E. (2008). An overlapping essential gene in the Potyviridae. Proceedings of the National Academy of Sciences, 105(15), 5897-5902. doi:10.1073/pnas.0800468105 es_ES
dc.description.references Urcuqui-Inchima, S., Haenni, A.-L., & Bernardi, F. (2001). Potyvirus proteins: a wealth of functions. Virus Research, 74(1-2), 157-175. doi:10.1016/s0168-1702(01)00220-9 es_ES
dc.description.references Kasschau, K. D., & Carrington, J. C. (1998). A Counterdefensive Strategy of Plant Viruses. Cell, 95(4), 461-470. doi:10.1016/s0092-8674(00)81614-1 es_ES
dc.description.references Guo, B., Lin, J., & Ye, K. (2011). Structure of the Autocatalytic Cysteine Protease Domain of Potyvirus Helper-component Proteinase. Journal of Biological Chemistry, 286(24), 21937-21943. doi:10.1074/jbc.m111.230706 es_ES
dc.description.references Wei, T., Zhang, C., Hong, J., Xiong, R., Kasschau, K. D., Zhou, X., … Wang, A. (2010). Formation of Complexes at Plasmodesmata for Potyvirus Intercellular Movement Is Mediated by the Viral Protein P3N-PIPO. PLoS Pathogens, 6(6), e1000962. doi:10.1371/journal.ppat.1000962 es_ES
dc.description.references Schaad, M. C., Jensen, P. E., & Carrington, J. C. (1997). Formation of plant RNA virus replication complexes on membranes: role of an endoplasmic reticulum-targeted viral protein. The EMBO Journal, 16(13), 4049-4059. doi:10.1093/emboj/16.13.4049 es_ES
dc.description.references Wei, T., Zhang, C., Hou, X., Sanfaçon, H., & Wang, A. (2013). The SNARE Protein Syp71 Is Essential for Turnip Mosaic Virus Infection by Mediating Fusion of Virus-Induced Vesicles with Chloroplasts. PLoS Pathogens, 9(5), e1003378. doi:10.1371/journal.ppat.1003378 es_ES
dc.description.references Puustinen, P., & Mäkinen, K. (2004). Uridylylation of the Potyvirus VPg by Viral Replicase NIb Correlates with the Nucleotide Binding Capacity of VPg. Journal of Biological Chemistry, 279(37), 38103-38110. doi:10.1074/jbc.m402910200 es_ES
dc.description.references Charron, C., Nicolaï, M., Gallois, J.-L., Robaglia, C., Moury, B., Palloix, A., & Caranta, C. (2008). Natural variation and functional analyses provide evidence for co-evolution between plant eIF4E and potyviral VPg. The Plant Journal, 54(1), 56-68. doi:10.1111/j.1365-313x.2008.03407.x es_ES
dc.description.references Eskelin, K., Hafren, A., Rantalainen, K. I., & Makinen, K. (2011). Potyviral VPg Enhances Viral RNA Translation and Inhibits Reporter mRNA Translation In Planta. Journal of Virology, 85(17), 9210-9221. doi:10.1128/jvi.00052-11 es_ES
dc.description.references Hong, Y., & Hunt, A. G. (1996). RNA Polymerase Activity Catalyzed by a Potyvirus-Encoded RNA-Dependent RNA Polymerase. Virology, 226(1), 146-151. doi:10.1006/viro.1996.0639 es_ES
dc.description.references López-Moya, J. J., Pirone, T. P., & Wang, R. Y. (1999). Context of the coat protein DAG motif affects potyvirus transmissibility by aphids. Journal of General Virology, 80(12), 3281-3288. doi:10.1099/0022-1317-80-12-3281 es_ES
dc.description.references Dolja, V. V., Haldeman-Cahill, R., Montgomery, A. E., Vandenbosch, K. A., & Carrington, J. C. (1995). Capsid Protein Determinants Involved in Cell-to-Cell and Long Distance Movement of Tobacco Etch Potyvirus. Virology, 206(2), 1007-1016. doi:10.1006/viro.1995.1023 es_ES
dc.description.references Rohožková, J., & Navrátil, M. (2011). P1 peptidase – a mysterious protein of family Potyviridae. Journal of Biosciences, 36(1), 189-200. doi:10.1007/s12038-011-9020-6 es_ES
dc.description.references Valli, A., Lopez-Moya, J. J., & Garcia, J. A. (2007). Recombination and gene duplication in the evolutionary diversification of P1 proteins in the family Potyviridae. Journal of General Virology, 88(3), 1016-1028. doi:10.1099/vir.0.82402-0 es_ES
dc.description.references Verchot, J., Koonin, E. V., & Carrington, J. C. (1991). The 35-kDa protein from the N-terminus of the potyviral polyprotein functions as a third virus-encoded proteinase. Virology, 185(2), 527-535. doi:10.1016/0042-6822(91)90522-d es_ES
dc.description.references Soumounou, Y., & Laliberte, J.-F. (1994). Nucleic acid-binding properties of the P1 protein of turnip mosaic potyvirus produced in Escherichia coli. Journal of General Virology, 75(10), 2567-2573. doi:10.1099/0022-1317-75-10-2567 es_ES
dc.description.references Brantley, J. D., & Hunt, A. G. (1993). The N-terminal protein of the polyprotein encoded by the potyvirus tobacco vein mottling virus is an RNA-binding protein. Journal of General Virology, 74(6), 1157-1162. doi:10.1099/0022-1317-74-6-1157 es_ES
dc.description.references Rajamäki, M.-L., Kelloniemi, J., Alminaite, A., Kekarainen, T., Rabenstein, F., & Valkonen, J. P. T. (2005). A novel insertion site inside the potyvirus P1 cistron allows expression of heterologous proteins and suggests some P1 functions. Virology, 342(1), 88-101. doi:10.1016/j.virol.2005.07.019 es_ES
dc.description.references Valli, A., Martin-Hernandez, A. M., Lopez-Moya, J. J., & Garcia, J. A. (2006). RNA Silencing Suppression by a Second Copy of the P1 Serine Protease of Cucumber Vein Yellowing Ipomovirus, a Member of the Family Potyviridae That Lacks the Cysteine Protease HCPro. Journal of Virology, 80(20), 10055-10063. doi:10.1128/jvi.00985-06 es_ES
dc.description.references Tena Fernández, F., González, I., Doblas, P., Rodríguez, C., Sahana, N., Kaur, H., … Canto, T. (2013). The influence ofcis-acting P1 protein and translational elements on the expression ofPotato virus Yhelper-component proteinase (HCPro) in heterologous systems and its suppression of silencing activity. Molecular Plant Pathology, 14(5), 530-541. doi:10.1111/mpp.12025 es_ES
dc.description.references SALVADOR, B., SAÉNZ, P., YANGÜEZ, E., QUIOT, J. B., QUIOT, L., DELGADILLO, M. O., … SIMÓN-MATEO, C. (2008). Host-specific effect of P1 exchange between two potyviruses. Molecular Plant Pathology, 9(2), 147-155. doi:10.1111/j.1364-3703.2007.00450.x es_ES
dc.description.references Bedoya, L. C., Martínez, F., Orzáez, D., & Daròs, J.-A. (2012). Visual Tracking of Plant Virus Infection and Movement Using a Reporter MYB Transcription Factor That Activates Anthocyanin Biosynthesis. Plant Physiology, 158(3), 1130-1138. doi:10.1104/pp.111.192922 es_ES
dc.description.references Nagai, T., Ibata, K., Park, E. S., Kubota, M., Mikoshiba, K., & Miyawaki, A. (2002). A variant of yellow fluorescent protein with fast and efficient maturation for cell-biological applications. Nature Biotechnology, 20(1), 87-90. doi:10.1038/nbt0102-87 es_ES
dc.description.references Subach, O. M., Gundorov, I. S., Yoshimura, M., Subach, F. V., Zhang, J., Grüenwald, D., … Verkhusha, V. V. (2008). Conversion of Red Fluorescent Protein into a Bright Blue Probe. Chemistry & Biology, 15(10), 1116-1124. doi:10.1016/j.chembiol.2008.08.006 es_ES
dc.description.references Schmidt, T. G., & Skerra, A. (2007). The Strep-tag system for one-step purification and high-affinity detection or capturing of proteins. Nature Protocols, 2(6), 1528-1535. doi:10.1038/nprot.2007.209 es_ES
dc.description.references Bedoya, L. C., & Daròs, J.-A. (2010). Stability of Tobacco etch virus infectious clones in plasmid vectors. Virus Research, 149(2), 234-240. doi:10.1016/j.virusres.2010.02.004 es_ES
dc.description.references Nohales, M.-A., Flores, R., & Daros, J.-A. (2012). Viroid RNA redirects host DNA ligase 1 to act as an RNA ligase. Proceedings of the National Academy of Sciences, 109(34), 13805-13810. doi:10.1073/pnas.1206187109 es_ES
dc.description.references Barneche, F. (2000). Fibrillarin genes encode both a conserved nucleolar protein and a novel snoRNA involved in rRNA methylation in Arabidopsis thaliana. Journal of Biological Chemistry. doi:10.1074/jbc.m002996200 es_ES
dc.description.references Kim, S. H., Ryabov, E. V., Kalinina, N. O., Rakitina, D. V., Gillespie, T., MacFarlane, S., … Taliansky, M. (2007). Cajal bodies and the nucleolus are required for a plant virus systemic infection. The EMBO Journal, 26(8), 2169-2179. doi:10.1038/sj.emboj.7601674 es_ES
dc.description.references Pendle, A. F., Clark, G. P., Boon, R., Lewandowska, D., Lam, Y. W., Andersen, J., … Shaw, P. J. (2005). Proteomic Analysis of the Arabidopsis Nucleolus Suggests Novel Nucleolar Functions. Molecular Biology of the Cell, 16(1), 260-269. doi:10.1091/mbc.e04-09-0791 es_ES
dc.description.references Sainsbury, F., & Lomonossoff, G. P. (2008). Extremely High-Level and Rapid Transient Protein Production in Plants without the Use of Viral Replication. Plant Physiology, 148(3), 1212-1218. doi:10.1104/pp.108.126284 es_ES
dc.description.references Bedoya, L., Martínez, F., Rubio, L., & Daròs, J.-A. (2010). Simultaneous equimolar expression of multiple proteins in plants from a disarmed potyvirus vector. Journal of Biotechnology, 150(2), 268-275. doi:10.1016/j.jbiotec.2010.08.006 es_ES
dc.description.references Jackson, A. O., & Larkins, B. A. (1976). Influence of Ionic Strength, pH, and Chelation of Divalent Metals on Isolation of Polyribosomes from Tobacco Leaves. Plant Physiology, 57(1), 5-10. doi:10.1104/pp.57.1.5 es_ES
dc.description.references Shevchenko, A., Jensen, O. N., Podtelejnikov, A. V., Sagliocco, F., Wilm, M., Vorm, O., … Mann, M. (1996). Linking genome and proteome by mass spectrometry: Large-scale identification of yeast proteins from two dimensional gels. Proceedings of the National Academy of Sciences, 93(25), 14440-14445. doi:10.1073/pnas.93.25.14440 es_ES
dc.description.references Dufresne, P. J., Thivierge, K., Cotton, S., Beauchemin, C., Ide, C., Ubalijoro, E., … Fortin, M. G. (2008). Heat shock 70 protein interaction with Turnip mosaic virus RNA-dependent RNA polymerase within virus-induced membrane vesicles. Virology, 374(1), 217-227. doi:10.1016/j.virol.2007.12.014 es_ES
dc.description.references Wei, T., Huang, T.-S., McNeil, J., Laliberte, J.-F., Hong, J., Nelson, R. S., & Wang, A. (2009). Sequential Recruitment of the Endoplasmic Reticulum and Chloroplasts for Plant Potyvirus Replication. Journal of Virology, 84(2), 799-809. doi:10.1128/jvi.01824-09 es_ES
dc.description.references Scott, M. S., Troshin, P. V., & Barton, G. J. (2011). NoD: a Nucleolar localization sequence detector for eukaryotic and viral proteins. BMC Bioinformatics, 12(1). doi:10.1186/1471-2105-12-317 es_ES
dc.description.references La Cour, T., Kiemer, L., Mølgaard, A., Gupta, R., Skriver, K., & Brunak, S. (2004). Analysis and prediction of leucine-rich nuclear export signals. Protein Engineering, Design and Selection, 17(6), 527-536. doi:10.1093/protein/gzh062 es_ES
dc.description.references Hafrén, A., Hofius, D., Rönnholm, G., Sonnewald, U., & Mäkinen, K. (2010). HSP70 and Its Cochaperone CPIP Promote Potyvirus Infection in Nicotiana benthamiana by Regulating Viral Coat Protein Functions. The Plant Cell, 22(2), 523-535. doi:10.1105/tpc.109.072413 es_ES
dc.description.references Park, H.-S., Himmelbach, A., Browning, K. S., Hohn, T., & Ryabova, L. A. (2001). A Plant Viral «Reinitiation» Factor Interacts with the Host Translational Machinery. Cell, 106(6), 723-733. doi:10.1016/s0092-8674(01)00487-1 es_ES
dc.description.references Ren, Q., Wang, Q. S., Firth, A. E., Chan, M. M. Y., Gouw, J. W., Guarna, M. M., … Jan, E. (2012). Alternative reading frame selection mediated by a tRNA-like domain of an internal ribosome entry site. Proceedings of the National Academy of Sciences, 109(11), E630-E639. doi:10.1073/pnas.1111303109 es_ES
dc.description.references Koh, D. C.-Y., Wong, S.-M., & Liu, D. X. (2003). Synergism of the 3′-Untranslated Region and an Internal Ribosome Entry Site Differentially Enhances the Translation of a Plant Virus Coat Protein. Journal of Biological Chemistry, 278(23), 20565-20573. doi:10.1074/jbc.m210212200 es_ES
dc.description.references Martínez-Salas, E. (1999). Internal ribosome entry site biology and its use in expression vectors. Current Opinion in Biotechnology, 10(5), 458-464. doi:10.1016/s0958-1669(99)00010-5 es_ES
dc.description.references Hellen, C. U. T. (2001). Internal ribosome entry sites in eukaryotic mRNA molecules. Genes & Development, 15(13), 1593-1612. doi:10.1101/gad.891101 es_ES
dc.description.references Yang, C., Zhang, C., Dittman, J. D., & Whitham, S. A. (2009). Differential requirement of ribosomal protein S6 by plant RNA viruses with different translation initiation strategies. Virology, 390(2), 163-173. doi:10.1016/j.virol.2009.05.018 es_ES
dc.description.references Wang, R. Y.-L., & Nagy, P. D. (2008). Tomato bushy stunt virus Co-Opts the RNA-Binding Function of a Host Metabolic Enzyme for Viral Genomic RNA Synthesis. Cell Host & Microbe, 3(3), 178-187. doi:10.1016/j.chom.2008.02.005 es_ES
dc.description.references Shaw, P., & Brown, J. (2011). Nucleoli: Composition, Function, and Dynamics. Plant Physiology, 158(1), 44-51. doi:10.1104/pp.111.188052 es_ES
dc.description.references Hiscox, J. A. (2007). RNA viruses: hijacking the dynamic nucleolus. Nature Reviews Microbiology, 5(2), 119-127. doi:10.1038/nrmicro1597 es_ES
dc.description.references Taliansky, M. E., Brown, J. W. S., Rajamäki, M. L., Valkonen, J. P. T., & Kalinina, N. O. (2010). Involvement of the Plant Nucleolus in Virus and Viroid Infections. Advances in Virus Research, 119-158. doi:10.1016/b978-0-12-385034-8.00005-3 es_ES
dc.description.references Rajamäki, M.-L., & Valkonen, J. P. T. (2009). Control of Nuclear and Nucleolar Localization of Nuclear Inclusion Protein a of Picorna-Like Potato virus A in Nicotiana Species. The Plant Cell, 21(8), 2485-2502. doi:10.1105/tpc.108.064147 es_ES
dc.description.references Khan, M. A., Yumak, H., & Goss, D. J. (2009). Kinetic Mechanism for the Binding of eIF4F and Tobacco Etch Virus Internal Ribosome Entry Site RNA. Journal of Biological Chemistry, 284(51), 35461-35470. doi:10.1074/jbc.m109.038463 es_ES
dc.description.references Ray, S., Yumak, H., Domashevskiy, A., Khan, M. A., Gallie, D. R., & Goss, D. J. (2006). Tobacco Etch Virus mRNA Preferentially Binds Wheat Germ Eukaryotic Initiation Factor (eIF) 4G Rather than eIFiso4G. Journal of Biological Chemistry, 281(47), 35826-35834. doi:10.1074/jbc.m605762200 es_ES
dc.description.references Gallie, D. R. (2001). Cap-Independent Translation Conferred by the 5’ Leader of Tobacco Etch Virus Is Eukaryotic Initiation Factor 4G Dependent. Journal of Virology, 75(24), 12141-12152. doi:10.1128/jvi.75.24.12141-12152.2001 es_ES
dc.description.references Gao, F., Gulay, S. P., Kasprzak, W., Dinman, J. D., Shapiro, B. A., & Simon, A. E. (2013). The Kissing-Loop T-Shaped Structure Translational Enhancer of Pea Enation Mosaic Virus Can Bind Simultaneously to Ribosomes and a 5’ Proximal Hairpin. Journal of Virology, 87(22), 11987-12002. doi:10.1128/jvi.02005-13 es_ES
dc.description.references Bureau, M. (2004). P6 protein of Cauliflower mosaic virus, a translation reinitiator, interacts with ribosomal protein L13 from Arabidopsis thaliana. Journal of General Virology, 85(12), 3765-3775. doi:10.1099/vir.0.80242-0 es_ES
dc.description.references Haas, M., Geldreich, A., Bureau, M., Dupuis, L., Leh, V., Vetter, G., … Keller, M. (2005). The Open Reading Frame VI Product of Cauliflower mosaic virus Is a Nucleocytoplasmic Protein: Its N Terminus Mediates Its Nuclear Export and Formation of Electron-Dense Viroplasms. The Plant Cell, 17(3), 927-943. doi:10.1105/tpc.104.029017 es_ES
dc.description.references Ala-Poikela, M., Goytia, E., Haikonen, T., Rajamaki, M.-L., & Valkonen, J. P. T. (2011). Helper Component Proteinase of the Genus Potyvirus Is an Interaction Partner of Translation Initiation Factors eIF(iso)4E and eIF4E and Contains a 4E Binding Motif. Journal of Virology, 85(13), 6784-6794. doi:10.1128/jvi.00485-11 es_ES
dc.description.references Pasin, F., Simón-Mateo, C., & García, J. A. (2014). The Hypervariable Amino-Terminus of P1 Protease Modulates Potyviral Replication and Host Defense Responses. PLoS Pathogens, 10(3), e1003985. doi:10.1371/journal.ppat.1003985 es_ES
dc.description.references Wang, D., & Maule, A. J. (1995). Inhibition of Host Gene Expression Associated with Plant Virus Replication. Science, 267(5195), 229-231. doi:10.1126/science.267.5195.229 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem