- -

Improving translation quality stability using Bayesian predictive adaptation

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Improving translation quality stability using Bayesian predictive adaptation

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Sanchis Trilles, Germán es_ES
dc.contributor.author Casacuberta Nolla, Francisco es_ES
dc.date.accessioned 2016-05-04T11:18:33Z
dc.date.available 2016-05-04T11:18:33Z
dc.date.issued 2015-11
dc.identifier.issn 0885-2308
dc.identifier.uri http://hdl.handle.net/10251/63537
dc.description.abstract [EN] We introduce a Bayesian approach for the adaptation of the log-linear weights present in state-of-the-art statistical machine translation systems. Typically, these weights are estimated by optimising a given translation quality criterion, taking only into account a certain set of development data (e.g., the adaptation data). In this article, we show that the Bayesian framework provides appropriate estimates of such weights in conditions where adaptation data is scarce. The theoretical framework is presented, alongside with a thorough experimentation and comparison with other weight estimation methods. We provide a comparison of different sampling strategies, including an effective heuristic strategy and a theoretically sound Markov chain Monte-Carlo algorithm. Experimental results show that Bayesian predictive adaptation (BPA) outperforms the re-estimation from scratch in conditions where adaptation data is scarce. Further analysis reveals that the improvements obtained are due to the greater stability of the estimation procedure. In addition, the proposed BPA framework has a much lower computational cost than raw re-estimation. © 2015 Elsevier Ltd. All rights reserved. es_ES
dc.description.sponsorship The research leading to these results has received funding from the European Union Seventh Framework Programme (FP7/2007-2013) under grant agreement Nr. 287576 (CasMaCat). Also funded by the Generalitat Valenciana under grant Prometeo/2009/014. en_EN
dc.language Inglés es_ES
dc.publisher Elsevier es_ES
dc.relation.ispartof Computer Speech and Language es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Bayesian method es_ES
dc.subject Adaptation es_ES
dc.subject Natural language processing es_ES
dc.subject Machine translation es_ES
dc.subject.classification LENGUAJES Y SISTEMAS INFORMATICOS es_ES
dc.title Improving translation quality stability using Bayesian predictive adaptation es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1016/j.csl.2015.03.001
dc.relation.projectID info:eu-repo/grantAgreement/Generalitat Valenciana//PROMETEO09%2F2009%2F014/ES/Adaptive learning and multimodality in pattern recognition (Almapater)/
dc.relation.projectID info:eu-repo/grantAgreement/EC/FP7/287576/EU/Cognitive Analysis and Statistical Methods for Advanced Computer Aided Translation/
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Sistemas Informáticos y Computación - Departament de Sistemes Informàtics i Computació es_ES
dc.description.bibliographicCitation Sanchis Trilles, G.; Casacuberta Nolla, F. (2015). Improving translation quality stability using Bayesian predictive adaptation. Computer Speech and Language. 34(1):1-17. https://doi.org/10.1016/j.csl.2015.03.001 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/10.1016/j.csl.2015.03.001 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 17 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 34 es_ES
dc.description.issue 1 es_ES
dc.relation.senia 283752 es_ES
dc.contributor.funder Generalitat Valenciana
dc.contributor.funder European Commission


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem