Mostrar el registro sencillo del ítem
dc.contributor.author | Navarro Urríos, Daniel | es_ES |
dc.contributor.author | Capuj, N. E. | es_ES |
dc.contributor.author | Gomis-Bresco, J. | es_ES |
dc.contributor.author | Alzina, F. | es_ES |
dc.contributor.author | Pitanti, A. | es_ES |
dc.contributor.author | Griol Barres, Amadeu | es_ES |
dc.contributor.author | Martínez Abietar, Alejandro José | es_ES |
dc.contributor.author | Sotomayor Torres, C. M. | es_ES |
dc.date.accessioned | 2016-05-09T09:56:31Z | |
dc.date.available | 2016-05-09T09:56:31Z | |
dc.date.issued | 2015-10-27 | |
dc.identifier.issn | 2045-2322 | |
dc.identifier.uri | http://hdl.handle.net/10251/63774 | |
dc.description.abstract | [EN] We report a novel injection scheme that allows for phonon lasing in a one-dimensional optomechanical photonic crystal, in a sideband unresolved regime and with cooperativity values as low as 10-2. It extracts energy from a cw infrared laser source and is based on the triggering of a thermooptical/free-carrier-dispersion self-pulsing limit-cycle, which anharmonically modulates the radiation pressure force. The large amplitude of the coherent mechanical motion acts as a feedback that stabilizes and entrains the self-pulsing oscillations to simple fractions of the mechanical frequency. A manifold of frequency-entrained regions with two different mechanical modes (at 54 and 122 MHz) are observed as a result of the wide tuneability of the natural frequency of the self-pulsing. The system operates at ambient conditions of pressure and temperature in a silicon platform, which enables its exploitation in sensing, intra-chip metrology or time-keeping applications. | es_ES |
dc.description.sponsorship | This work was supported by the European Comission project TAILPHOX (ICT-FP7-233883), the ERC Advanced Grant SOULMAN (ERC-FP7-321122) and the Spanish MINECO project TAPHOR (MAT2012-31392). The authors sincerely thank B. Djafari-Rouhani, Y. Pennec and M. Oudich for the design of the OM photonic crystal, A. Trifonova, S. Valenzuela and E. Weig for a critical reading of the manuscript and A. Tredicucci for fruitful discussions. A. M and A. G thank L. Bellieres and N. Sanchez-Losilla for their contributions in the OM photonic crystal etching processes. DNU and JGB gratefully acknowledge the support of a Beatriu de Pinos and a Juan de la Cierva postdoctoral fellowship, respectively. | en_EN |
dc.language | Inglés | es_ES |
dc.publisher | Nature Publishing Group | es_ES |
dc.relation.ispartof | Scientific Reports | es_ES |
dc.rights | Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) | es_ES |
dc.subject | Phonon laser | es_ES |
dc.subject | Optomechanics | es_ES |
dc.subject | Cavity optomechanics | es_ES |
dc.subject.classification | TEORIA DE LA SEÑAL Y COMUNICACIONES | es_ES |
dc.title | A self-stabilized coherent phonon source driven by optical forces | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1038/srep15733 | |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//MAT2012-31392/ES/DISEÑO DE LAS RELACIONES DE DISPERSION DE FONONES ACUSTICOS/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/EC/FP7/233883/EU/TAILoring photon-phonon interaction in silicon PHOXonic crystals/ | |
dc.relation.projectID | info:eu-repo/grantAgreement/EC/FP7/321122/EU/Sound-Light Manipulation in the Terahertz/ | |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Comunicaciones - Departament de Comunicacions | es_ES |
dc.description.bibliographicCitation | Navarro Urríos, D.; Capuj, NE.; Gomis-Bresco, J.; Alzina, F.; Pitanti, A.; Griol Barres, A.; Martínez Abietar, AJ.... (2015). A self-stabilized coherent phonon source driven by optical forces. Scientific Reports. 5(15733):1-7. https://doi.org/10.1038/srep15733 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | http://dx.doi.org/10.1038/srep15733 | es_ES |
dc.description.upvformatpinicio | 1 | es_ES |
dc.description.upvformatpfin | 7 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 5 | es_ES |
dc.description.issue | 15733 | es_ES |
dc.relation.senia | 304253 | es_ES |
dc.identifier.pmid | 26503448 | en_EN |
dc.identifier.pmcid | PMC4621534 | en_EN |
dc.contributor.funder | European Commission | |
dc.contributor.funder | Ministerio de Economía y Competitividad | |
dc.description.references | Feng, X. L., White, C. J., Hajimiri, A. & Roukes, M. L. A self-sustaining ultrahigh-frequency nanoelectromechanical oscillator. Nat. Nanotech. 3, 342 (2008). | es_ES |
dc.description.references | Aspelmeyer, M., Kippenberg, T. J. & Marquardt, F. Cavity optomechanics. Rev. Mod. Phys. 86, 1391 (2014). | es_ES |
dc.description.references | Pikovsky, A., Rosenblum, M. & Kurths, J. Synchronization: a universal concept in nonlinear sciences (Cambridge university press, Cambridge 2003). | es_ES |
dc.description.references | Heinrich, G., Ludwig, M., Qian, J., Kubala, B. & Marquardt, F. Collective dynamics in optomechanical arrays. Phys. Rev. Lett. 107, 043603 (2011). | es_ES |
dc.description.references | Zhang, M. et al. Synchronization of micromechanical oscillators using light. Phys. Rev. Lett. 109, 233906 (2012). | es_ES |
dc.description.references | Bagheri, M., Poot, M., Fan, L., Marquardt, F. & Tang, H. X. Photonic cavity synchronization of nanomechanical oscillators. Phys. Rev. Lett. 111, 213902 (2013). | es_ES |
dc.description.references | Matheny, M. H. et al. Phase synchronization of two anharmonic nanomechanical oscillators. Phys. Rev. Lett. 112, 014101 (2014). | es_ES |
dc.description.references | Mahboob, I., Nishiguchi, K., Fujiwara, A. & Yamaguchi, H. Phonon Lasing in an Electromechanical Resonator. Phys. Rev. Lett. 110, 127202 (2013). | es_ES |
dc.description.references | Grudinin, I. S., Lee, H., Painter, O. & Vahala, K. J. Phonon laser action in a tunable two-level system. Phys. Rev. Lett. 104, 083901 (2010). | es_ES |
dc.description.references | Kippenberg, T. J., Rokhsari, H., Carmon, T., Scherer, A. & Vahala, K. J. Analysis of radiation-pressure induced mechanical oscillation of an optical microcavity. Phys. Rev. Lett. 95, 033901 (2005). | es_ES |
dc.description.references | Kippenberg, T. J. & Vahala, K. J. Cavity optomechanics: back-action at the mesoscale. Science 321, 1172–1176 (2008). | es_ES |
dc.description.references | Schliesser, A. & Kippenberg, T. J. in Cavity Optomechanics, Aspelmeyer M., Kippenberg T. J. & Marquardt F. Eds (Springer: Berlin Heidelberg, 2014), chap. 6. | es_ES |
dc.description.references | Roels, J. et al. Parametric instability of an integrated micromechanical oscillator by means of active optomechanical feedback. Opt. Express 19, 13081–13088 (2011). | es_ES |
dc.description.references | Villanueva, L. G. et al. A nanoscale parametric feedback oscillator. Nano Lett. 11, 5054–5059 (2011). | es_ES |
dc.description.references | Gomis-Bresco, J. et al. A one-dimensional optomechanical crystal with a complete phononic band gap. Nat. Commun. 5, 4452 (2014). | es_ES |
dc.description.references | Barclay, P. E., Srinivasan, K. & Painter, O. Nonlinear response of silicon photonic crystal microresonators excited via an integrated waveguide and fiber taper. Opt. Express 13, 801 (2005). | es_ES |
dc.description.references | Johnson, S. G. et al. Perturbation theory for Maxwell’s equations with shifting material boundaries. Phys. Rev. E 65, 066611 (2003). | es_ES |
dc.description.references | Chen, S., Zhang, L., Fei, Y. & Cao, T. Bistability and self-pulsation phenomena in silicon microring resonators based on nonlinear optical effects. Opt. Express 20, 7454 (2012). | es_ES |
dc.description.references | Armaroli, A. et al. Oscillatory dynamics in nanocavities with noninstantaneous Kerr response. Phys. Rev. A 84, 053816 (2011). | es_ES |
dc.description.references | Mancinelli, M., Borghi, M., Ramiro-Manzano, F., Fedeli, J. M. & Pavesi, L. Chaotic dynamics in coupled resonator sequences. Opt. Express 22, 14505 (2014). | es_ES |
dc.description.references | Xu, Q. & Lipson, M. Carrier-induced optical bistability in silicon ring resonators. Opt. Lett. 31, 341 (2006). | es_ES |
dc.description.references | Johnson, T. J., Borselli, M. & Painter, O. Self-induced optical modulation of the transmission through a high-Q silicon microdisk resonator. Opt. Express, 14, 817–831 (2006). | es_ES |
dc.description.references | Pernice, W. H., Li, M. & Tang, H. X. Time-domain measurement of optical transport in silicon micro-ring resonators. Opt. Express, 18, 18438–18452 (2010). | es_ES |
dc.description.references | Yang, J. et al. Radio frequency regenerative oscillations in monolithic high-Q/V heterostructured photonic crystal cavities. Appl. Phys. Lett. 104, 061104 (2014). | es_ES |
dc.description.references | Zhang, L., Fei, Y., Cao, Y., Lei, X. & Chen, S. Experimental observations of thermo-optical bistability and self-pulsation in silicon microring resonators. JOSA B 31, 201–206 (2014). | es_ES |
dc.description.references | Deng, Y., Liu, F., Leseman, Z. & Hossein-Zadeh, M. Thermo-optomechanical oscillator for sensing applications. Opt. Express 21, 4653–4664 (2013). | es_ES |
dc.description.references | Lifshitz, R. & Cross, M. C. Response of parametrically driven nonlinear coupled oscillators with application to micromechanical and nanomechanical resonator arrays. Phys. Rev. B 67, 134302 (2003). | es_ES |