Mostrar el registro sencillo del ítem
dc.contributor.author | Chen, Jiangang | es_ES |
dc.contributor.author | Hou, Gary Y. | es_ES |
dc.contributor.author | Marquet, Fabrice | es_ES |
dc.contributor.author | Han, Yang | es_ES |
dc.contributor.author | Camarena Femenia, Francisco | es_ES |
dc.contributor.author | Konofagou, Elisa | es_ES |
dc.date.accessioned | 2016-05-09T10:54:15Z | |
dc.date.available | 2016-05-09T10:54:15Z | |
dc.date.issued | 2015-10-07 | |
dc.identifier.issn | 0031-9155 | |
dc.identifier.uri | http://hdl.handle.net/10251/63781 | |
dc.description.abstract | Acoustic attenuation represents the energy loss of the propagating wave through biological tissues and plays a significant role in both therapeutic and diagnostic ultrasound applications. Estimation of acoustic attenuation remains challenging but critical for tissue characterization. In this study, an attenuation estimation approach was developed using the radiation-force-based method of harmonic motion imaging (HMI). 2D tissue displacement maps were acquired by moving the transducer in a raster-scan format. A linear regression model was applied on the logarithm of the HMI displacements at different depths in order to estimate the acoustic attenuation. Commercially available phantoms with known attenuations (n = 5) and in vitro canine livers (n = 3) were tested, as well as HIFU lesions in in vitro canine livers (n = 5). Results demonstrated that attenuations obtained from the phantoms showed a good correlation (R2 = 0.976) with the independently obtained values reported by the manufacturer with an estimation error (compared to the values independently measured) varying within the range of 15 35%. The estimated attenuation in the in vitro canine livers was equal to 0.32 ± 0.03 dB cm−1 MHz−1, which is in good agreement with the existing literature. The attenuation in HIFU lesions was found to be higher (0.58 ± 0.06 dB cm−1 MHz−1) than that in normal tissues, also in agreement with the results from previous publications. Future potential applications of the proposed method include estimation of attenuation in pathological tissues before and after thermal ablation. | es_ES |
dc.description.sponsorship | This project was supported by the National Institutes of Health (R01EB014496). | en_EN |
dc.language | Inglés | es_ES |
dc.publisher | IOP Publishing: Hybrid Open Access | es_ES |
dc.relation.ispartof | Physics in Medicine and Biology | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Attenuation | es_ES |
dc.subject | Harmonic motion imaging | es_ES |
dc.subject | Radiation force | es_ES |
dc.subject | Ultrasound | es_ES |
dc.subject.classification | FISICA APLICADA | es_ES |
dc.title | Radiation-force-based estimation of acoustic attenuation using harmonic motion imaging (HMI) in phantoms and in vitro livers before and after HIFU ablation | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1088/0031-9155/60/19/7499 | |
dc.relation.projectID | info:eu-repo/grantAgreement/NIH//R01EB014496/ | es_ES |
dc.rights.accessRights | Cerrado | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Física Aplicada - Departament de Física Aplicada | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Instituto de Investigación para la Gestión Integral de Zonas Costeras - Institut d'Investigació per a la Gestió Integral de Zones Costaneres | es_ES |
dc.description.bibliographicCitation | Chen, J.; Hou, GY.; Marquet, F.; Han, Y.; Camarena Femenia, F.; Konofagou, E. (2015). Radiation-force-based estimation of acoustic attenuation using harmonic motion imaging (HMI) in phantoms and in vitro livers before and after HIFU ablation. Physics in Medicine and Biology. 60(19):7499-7512. doi:10.1088/0031-9155/60/19/7499 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | http://dx.doi.org/10.1088/0031-9155/60/19/7499 | es_ES |
dc.description.upvformatpinicio | 7499 | es_ES |
dc.description.upvformatpfin | 7512 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 60 | es_ES |
dc.description.issue | 19 | es_ES |
dc.relation.senia | 298219 | es_ES |
dc.contributor.funder | National Institutes of Health, EEUU | es_ES |
dc.description.references | Bigelow, T. A., McFarlin, B. L., O’Brien, W. D., & Oelze, M. L. (2008). In vivoultrasonic attenuation slope estimates for detecting cervical ripening in rats: Preliminary results. The Journal of the Acoustical Society of America, 123(3), 1794-1800. doi:10.1121/1.2832317 | es_ES |
dc.description.references | Clarke, R. ., Bush, N. ., & Ter Haar, G. . (2003). The changes in acoustic attenuation due to in vitro heating. Ultrasound in Medicine & Biology, 29(1), 127-135. doi:10.1016/s0301-5629(02)00693-2 | es_ES |
dc.description.references | Damianou, C. (2003). In vitro and in vivo ablation of porcine renal tissues using high-intensity focused ultrasound. Ultrasound in Medicine & Biology, 29(9), 1321-1330. doi:10.1016/s0301-5629(03)00981-5 | es_ES |
dc.description.references | Damianou, C. A., Sanghvi, N. T., Fry, F. J., & Maass-Moreno, R. (1997). Dependence of ultrasonic attenuation and absorption in dog soft tissues on temperature and thermal dose. The Journal of the Acoustical Society of America, 102(1), 628-634. doi:10.1121/1.419737 | es_ES |
dc.description.references | Goodsitt, M. M., Madsen, E. L., & Zagzebski, J. A. (1982). Field patterns of pulsed, focused, ultrasonic radiators in attenuating and nonattenuating media. The Journal of the Acoustical Society of America, 71(2), 318-329. doi:10.1121/1.387455 | es_ES |
dc.description.references | Hou, G. Y., Luo, J., Maleke, C., & Konofagou, E. E. (2010). Simulation of HMIFU (Harmonic Motion Imaging for Focused Ultrasound) with in-vitro validation. Proceedings of the 2010 IEEE 36th Annual Northeast Bioengineering Conference (NEBEC). doi:10.1109/nebc.2010.5458131 | es_ES |
dc.description.references | Hou, G. Y., Luo, J., Marquet, F., Maleke, C., Vappou, J., & Konofagou, E. E. (2011). Performance Assessment of HIFU Lesion Detection by Harmonic Motion Imaging for Focused Ultrasound (HMIFU): A 3-D Finite-Element-Based Framework with Experimental Validation. Ultrasound in Medicine & Biology, 37(12), 2013-2027. doi:10.1016/j.ultrasmedbio.2011.09.005 | es_ES |
dc.description.references | Kremkau, F. W., Barnes, R. W., & McGraw, C. P. (1981). Ultrasonic attenuation and propagation speed in normal human brain. The Journal of the Acoustical Society of America, 70(1), 29-38. doi:10.1121/1.386578 | es_ES |
dc.description.references | Kuc, R., & Schwartz, M. (1979). Estimating the Acoustic Attenuation Coefficient Slope for Liver from Reflected Ultrasound Signals. IEEE Transactions on Sonics and Ultrasonics, 26(5), 353-361. doi:10.1109/t-su.1979.31116 | es_ES |
dc.description.references | Lin, T., Ophir, J., & Potter, G. (1987). Frequency‐dependent ultrasonic differentiation of normal and diffusely diseased liver. The Journal of the Acoustical Society of America, 82(4), 1131-1138. doi:10.1121/1.395303 | es_ES |
dc.description.references | Lyons, M. E., & Parker, K. J. (1988). Absorption and attenuation in soft tissues. II. Experimental results. IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control, 35(4), 511-521. doi:10.1109/58.4189 | es_ES |
dc.description.references | Madsen, E. L., Goodsitt, M. M., & Zagzebski, J. A. (1981). Continuous waves generated by focused radiators. The Journal of the Acoustical Society of America, 70(5), 1508-1517. doi:10.1121/1.387108 | es_ES |
dc.description.references | Maleke, C., & Konofagou, E. E. (2010). In Vivo Feasibility of Real-Time Monitoring of Focused Ultrasound Surgery (FUS) Using Harmonic Motion Imaging (HMI). IEEE Transactions on Biomedical Engineering, 57(1), 7-11. doi:10.1109/tbme.2009.2027423 | es_ES |
dc.description.references | Maleke, C., Luo, J., Gamarnik, V., Lu, X. L., & Konofagou, E. E. (2010). Simulation Study of Amplitude-Modulated (AM) Harmonic Motion Imaging (HMI) for Stiffness Contrast Quantification with Experimental Validation. Ultrasonic Imaging, 32(3), 154-176. doi:10.1177/016173461003200304 | es_ES |
dc.description.references | NYBORG, W. L. M. (1965). Acoustic Streaming. Physical Acoustics, 265-331. doi:10.1016/b978-0-12-395662-0.50015-1 | es_ES |
dc.description.references | Ophir, J., Shawker, T. H., Maklad, N. F., Miller, J. G., Flax, S. W., Narayana, P. A., & Jones, J. P. (1984). Attenuation Estimation in Reflection: Progress and Prospects. Ultrasonic Imaging, 6(4), 349-395. doi:10.1177/016173468400600401 | es_ES |
dc.description.references | Palmeri, M. L., Frinkley, K. D., Oldenburg, K. G., & Nightingale, K. R. (2006). Characterizing Acoustic Attenuation of Homogeneous Media Using Focused Impulsive Acoustic Radiation Force. Ultrasonic Imaging, 28(2), 114-128. doi:10.1177/016173460602800204 | es_ES |
dc.description.references | Parker, K. J. (1983). Ultrasonic attenuation and absorption in liver tissue. Ultrasound in Medicine & Biology, 9(4), 363-369. doi:10.1016/0301-5629(83)90089-3 | es_ES |
dc.description.references | Parmar, N., & Kolios, M. C. (2006). An investigation of the use of transmission ultrasound to measure acoustic attenuation changes in thermal therapy. Medical & Biological Engineering & Computing, 44(7), 583-591. doi:10.1007/s11517-006-0067-8 | es_ES |
dc.description.references | Pohlhammer, J. D., Edwards, C. A., & O’Brien, W. D. (1981). Phase insensitive ultrasonic attenuation coefficient determination of fresh bovine liver over an extended frequency range. Medical Physics, 8(5), 692-694. doi:10.1118/1.595030 | es_ES |
dc.description.references | Techavipoo, U., Varghese, T., Chen, Q., Stiles, T. A., Zagzebski, J. A., & Frank, G. R. (2004). Temperature dependence of ultrasonic propagation speed and attenuation in excised canine liver tissue measured using transmitted and reflected pulses. The Journal of the Acoustical Society of America, 115(6), 2859-2865. doi:10.1121/1.1738453 | es_ES |
dc.description.references | Treece, G., Prager, R., & Gee, A. (2005). Ultrasound attenuation measurement in the presence of scatterer variation for reduction of shadowing and enhancement. IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control, 52(12), 2346-2360. doi:10.1109/tuffc.2005.1563279 | es_ES |
dc.description.references | Tyréus, P. D., & Diederich, C. (2004). Two-dimensional acoustic attenuation mapping of high-temperature interstitial ultrasound lesions. Physics in Medicine and Biology, 49(4), 533-546. doi:10.1088/0031-9155/49/4/005 | es_ES |
dc.description.references | Vappou, J., Maleke, C., & Konofagou, E. E. (2009). Quantitative viscoelastic parameters measured by harmonic motion imaging. Physics in Medicine and Biology, 54(11), 3579-3594. doi:10.1088/0031-9155/54/11/020 | es_ES |