- -

Radiation-force-based estimation of acoustic attenuation using harmonic motion imaging (HMI) in phantoms and in vitro livers before and after HIFU ablation

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Radiation-force-based estimation of acoustic attenuation using harmonic motion imaging (HMI) in phantoms and in vitro livers before and after HIFU ablation

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Chen, Jiangang es_ES
dc.contributor.author Hou, Gary Y. es_ES
dc.contributor.author Marquet, Fabrice es_ES
dc.contributor.author Han, Yang es_ES
dc.contributor.author Camarena Femenia, Francisco es_ES
dc.contributor.author Konofagou, Elisa es_ES
dc.date.accessioned 2016-05-09T10:54:15Z
dc.date.available 2016-05-09T10:54:15Z
dc.date.issued 2015-10-07
dc.identifier.issn 0031-9155
dc.identifier.uri http://hdl.handle.net/10251/63781
dc.description.abstract Acoustic attenuation represents the energy loss of the propagating wave through biological tissues and plays a significant role in both therapeutic and diagnostic ultrasound applications. Estimation of acoustic attenuation remains challenging but critical for tissue characterization. In this study, an attenuation estimation approach was developed using the radiation-force-based method of harmonic motion imaging (HMI). 2D tissue displacement maps were acquired by moving the transducer in a raster-scan format. A linear regression model was applied on the logarithm of the HMI displacements at different depths in order to estimate the acoustic attenuation. Commercially available phantoms with known attenuations (n = 5) and in vitro canine livers (n = 3) were tested, as well as HIFU lesions in in vitro canine livers (n = 5). Results demonstrated that attenuations obtained from the phantoms showed a good correlation (R2 = 0.976) with the independently obtained values reported by the manufacturer with an estimation error (compared to the values independently measured) varying within the range of 15 35%. The estimated attenuation in the in vitro canine livers was equal to 0.32 ± 0.03 dB cm−1 MHz−1, which is in good agreement with the existing literature. The attenuation in HIFU lesions was found to be higher (0.58 ± 0.06 dB cm−1 MHz−1) than that in normal tissues, also in agreement with the results from previous publications. Future potential applications of the proposed method include estimation of attenuation in pathological tissues before and after thermal ablation. es_ES
dc.description.sponsorship This project was supported by the National Institutes of Health (R01EB014496). en_EN
dc.language Inglés es_ES
dc.publisher IOP Publishing: Hybrid Open Access es_ES
dc.relation.ispartof Physics in Medicine and Biology es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Attenuation es_ES
dc.subject Harmonic motion imaging es_ES
dc.subject Radiation force es_ES
dc.subject Ultrasound es_ES
dc.subject.classification FISICA APLICADA es_ES
dc.title Radiation-force-based estimation of acoustic attenuation using harmonic motion imaging (HMI) in phantoms and in vitro livers before and after HIFU ablation es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1088/0031-9155/60/19/7499
dc.relation.projectID info:eu-repo/grantAgreement/NIH//R01EB014496/ es_ES
dc.rights.accessRights Cerrado es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Física Aplicada - Departament de Física Aplicada es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto de Investigación para la Gestión Integral de Zonas Costeras - Institut d'Investigació per a la Gestió Integral de Zones Costaneres es_ES
dc.description.bibliographicCitation Chen, J.; Hou, GY.; Marquet, F.; Han, Y.; Camarena Femenia, F.; Konofagou, E. (2015). Radiation-force-based estimation of acoustic attenuation using harmonic motion imaging (HMI) in phantoms and in vitro livers before and after HIFU ablation. Physics in Medicine and Biology. 60(19):7499-7512. doi:10.1088/0031-9155/60/19/7499 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/10.1088/0031-9155/60/19/7499 es_ES
dc.description.upvformatpinicio 7499 es_ES
dc.description.upvformatpfin 7512 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 60 es_ES
dc.description.issue 19 es_ES
dc.relation.senia 298219 es_ES
dc.contributor.funder National Institutes of Health, EEUU es_ES
dc.description.references Bigelow, T. A., McFarlin, B. L., O’Brien, W. D., & Oelze, M. L. (2008). In vivoultrasonic attenuation slope estimates for detecting cervical ripening in rats: Preliminary results. The Journal of the Acoustical Society of America, 123(3), 1794-1800. doi:10.1121/1.2832317 es_ES
dc.description.references Clarke, R. ., Bush, N. ., & Ter Haar, G. . (2003). The changes in acoustic attenuation due to in vitro heating. Ultrasound in Medicine & Biology, 29(1), 127-135. doi:10.1016/s0301-5629(02)00693-2 es_ES
dc.description.references Damianou, C. (2003). In vitro and in vivo ablation of porcine renal tissues using high-intensity focused ultrasound. Ultrasound in Medicine & Biology, 29(9), 1321-1330. doi:10.1016/s0301-5629(03)00981-5 es_ES
dc.description.references Damianou, C. A., Sanghvi, N. T., Fry, F. J., & Maass-Moreno, R. (1997). Dependence of ultrasonic attenuation and absorption in dog soft tissues on temperature and thermal dose. The Journal of the Acoustical Society of America, 102(1), 628-634. doi:10.1121/1.419737 es_ES
dc.description.references Goodsitt, M. M., Madsen, E. L., & Zagzebski, J. A. (1982). Field patterns of pulsed, focused, ultrasonic radiators in attenuating and nonattenuating media. The Journal of the Acoustical Society of America, 71(2), 318-329. doi:10.1121/1.387455 es_ES
dc.description.references Hou, G. Y., Luo, J., Maleke, C., & Konofagou, E. E. (2010). Simulation of HMIFU (Harmonic Motion Imaging for Focused Ultrasound) with in-vitro validation. Proceedings of the 2010 IEEE 36th Annual Northeast Bioengineering Conference (NEBEC). doi:10.1109/nebc.2010.5458131 es_ES
dc.description.references Hou, G. Y., Luo, J., Marquet, F., Maleke, C., Vappou, J., & Konofagou, E. E. (2011). Performance Assessment of HIFU Lesion Detection by Harmonic Motion Imaging for Focused Ultrasound (HMIFU): A 3-D Finite-Element-Based Framework with Experimental Validation. Ultrasound in Medicine & Biology, 37(12), 2013-2027. doi:10.1016/j.ultrasmedbio.2011.09.005 es_ES
dc.description.references Kremkau, F. W., Barnes, R. W., & McGraw, C. P. (1981). Ultrasonic attenuation and propagation speed in normal human brain. The Journal of the Acoustical Society of America, 70(1), 29-38. doi:10.1121/1.386578 es_ES
dc.description.references Kuc, R., & Schwartz, M. (1979). Estimating the Acoustic Attenuation Coefficient Slope for Liver from Reflected Ultrasound Signals. IEEE Transactions on Sonics and Ultrasonics, 26(5), 353-361. doi:10.1109/t-su.1979.31116 es_ES
dc.description.references Lin, T., Ophir, J., & Potter, G. (1987). Frequency‐dependent ultrasonic differentiation of normal and diffusely diseased liver. The Journal of the Acoustical Society of America, 82(4), 1131-1138. doi:10.1121/1.395303 es_ES
dc.description.references Lyons, M. E., & Parker, K. J. (1988). Absorption and attenuation in soft tissues. II. Experimental results. IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control, 35(4), 511-521. doi:10.1109/58.4189 es_ES
dc.description.references Madsen, E. L., Goodsitt, M. M., & Zagzebski, J. A. (1981). Continuous waves generated by focused radiators. The Journal of the Acoustical Society of America, 70(5), 1508-1517. doi:10.1121/1.387108 es_ES
dc.description.references Maleke, C., & Konofagou, E. E. (2010). In Vivo Feasibility of Real-Time Monitoring of Focused Ultrasound Surgery (FUS) Using Harmonic Motion Imaging (HMI). IEEE Transactions on Biomedical Engineering, 57(1), 7-11. doi:10.1109/tbme.2009.2027423 es_ES
dc.description.references Maleke, C., Luo, J., Gamarnik, V., Lu, X. L., & Konofagou, E. E. (2010). Simulation Study of Amplitude-Modulated (AM) Harmonic Motion Imaging (HMI) for Stiffness Contrast Quantification with Experimental Validation. Ultrasonic Imaging, 32(3), 154-176. doi:10.1177/016173461003200304 es_ES
dc.description.references NYBORG, W. L. M. (1965). Acoustic Streaming. Physical Acoustics, 265-331. doi:10.1016/b978-0-12-395662-0.50015-1 es_ES
dc.description.references Ophir, J., Shawker, T. H., Maklad, N. F., Miller, J. G., Flax, S. W., Narayana, P. A., & Jones, J. P. (1984). Attenuation Estimation in Reflection: Progress and Prospects. Ultrasonic Imaging, 6(4), 349-395. doi:10.1177/016173468400600401 es_ES
dc.description.references Palmeri, M. L., Frinkley, K. D., Oldenburg, K. G., & Nightingale, K. R. (2006). Characterizing Acoustic Attenuation of Homogeneous Media Using Focused Impulsive Acoustic Radiation Force. Ultrasonic Imaging, 28(2), 114-128. doi:10.1177/016173460602800204 es_ES
dc.description.references Parker, K. J. (1983). Ultrasonic attenuation and absorption in liver tissue. Ultrasound in Medicine & Biology, 9(4), 363-369. doi:10.1016/0301-5629(83)90089-3 es_ES
dc.description.references Parmar, N., & Kolios, M. C. (2006). An investigation of the use of transmission ultrasound to measure acoustic attenuation changes in thermal therapy. Medical & Biological Engineering & Computing, 44(7), 583-591. doi:10.1007/s11517-006-0067-8 es_ES
dc.description.references Pohlhammer, J. D., Edwards, C. A., & O’Brien, W. D. (1981). Phase insensitive ultrasonic attenuation coefficient determination of fresh bovine liver over an extended frequency range. Medical Physics, 8(5), 692-694. doi:10.1118/1.595030 es_ES
dc.description.references Techavipoo, U., Varghese, T., Chen, Q., Stiles, T. A., Zagzebski, J. A., & Frank, G. R. (2004). Temperature dependence of ultrasonic propagation speed and attenuation in excised canine liver tissue measured using transmitted and reflected pulses. The Journal of the Acoustical Society of America, 115(6), 2859-2865. doi:10.1121/1.1738453 es_ES
dc.description.references Treece, G., Prager, R., & Gee, A. (2005). Ultrasound attenuation measurement in the presence of scatterer variation for reduction of shadowing and enhancement. IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control, 52(12), 2346-2360. doi:10.1109/tuffc.2005.1563279 es_ES
dc.description.references Tyréus, P. D., & Diederich, C. (2004). Two-dimensional acoustic attenuation mapping of high-temperature interstitial ultrasound lesions. Physics in Medicine and Biology, 49(4), 533-546. doi:10.1088/0031-9155/49/4/005 es_ES
dc.description.references Vappou, J., Maleke, C., & Konofagou, E. E. (2009). Quantitative viscoelastic parameters measured by harmonic motion imaging. Physics in Medicine and Biology, 54(11), 3579-3594. doi:10.1088/0031-9155/54/11/020 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem