in Asymmetric Catalysis in Organic Synthesis, Wiley, New York, 1994;
in Catalytic Asymmetric Synthesis, Wiley, New York 2000.
in Asymmetric Catalysis on Industrial Scale: Challenges, Approaches and Solutions, Wiley, New York, 2004.
[+]
in Asymmetric Catalysis in Organic Synthesis, Wiley, New York, 1994;
in Catalytic Asymmetric Synthesis, Wiley, New York 2000.
in Asymmetric Catalysis on Industrial Scale: Challenges, Approaches and Solutions, Wiley, New York, 2004.
Kim, Y. H. (2001). Dual Enantioselective Control in Asymmetric Synthesis. Accounts of Chemical Research, 34(12), 955-962. doi:10.1021/ar000187z
Zanoni, G., Castronovo, F., Franzini, M., Vidari, G., & Giannini, E. (2003). Toggling enantioselective catalysis—a promising paradigm in the development of more efficient and versatile enantioselective synthetic methodologies. Chemical Society Reviews, 32(3), 115-129. doi:10.1039/b201455f
Du, D.-M., Lu, S.-F., Fang, T., & Xu, J. (2005). Asymmetric Henry Reaction Catalyzed byC2-Symmetric Tridentate Bis(oxazoline) and Bis(thiazoline) Complexes: Metal-Controlled Reversal of Enantioselectivity. The Journal of Organic Chemistry, 70(9), 3712-3715. doi:10.1021/jo050097d
Sibi, M. P., Shay, J. J., Liu, M., & Jasperse, C. P. (1998). Chiral Lewis Acid Catalysis in Conjugate Additions ofO-Benzylhydroxylamine to Unsaturated Amides. Enantioselective Synthesis of β-Amino Acid Precursors. Journal of the American Chemical Society, 120(26), 6615-6616. doi:10.1021/ja980520i
Lutz, F., Igarashi, T., Kawasaki, T., & Soai, K. (2005). Small Amounts of Achiral β-Amino Alcohols Reverse the Enantioselectivity of Chiral Catalysts in Cooperative Asymmetric Autocatalysis. Journal of the American Chemical Society, 127(35), 12206-12207. doi:10.1021/ja054323c
Desimoni, G., Faita, G., Gamba Invernizzi, A., & Righetti, P. (1997). Can a chiral catalyst containing the same ligand/metal components promote the formation of both enantiomers enantioselectively? The bis(oxazoline)-magnesium perchlorate-catalyzed asymmetric Diels-Alder reaction. Tetrahedron, 53(22), 7671-7688. doi:10.1016/s0040-4020(97)00433-x
Kobayashi, S., & Horibe, M. (1994). Highly Enantioselective Synthesis of Enantiomeric 2,3-Dihydroxy Thioesters by Using Similar Types of Chiral Sources Derived from L-Proline. Journal of the American Chemical Society, 116(21), 9805-9806. doi:10.1021/ja00100a078
Altava, B., Burguete, M. I., Garcı́a-Verdugo, E., Luis, S. V., Miravet, J. F., & Vicent, M. J. (2000). On the origin of changes in topicity observed in Diels–Alder reactions catalyzed by Ti–TADDOLates. Tetrahedron: Asymmetry, 11(24), 4885-4893. doi:10.1016/s0957-4166(00)00464-x
Altava, B., Burguete, M. I., García-Verdugo, E., Luis, S. V., & Vicent, M. J. (2006). Functional monolithic resins for the development of enantioselective versatile catalytic minireactors with long-term stability: TADDOL supported systems. Green Chem., 8(8), 717-726. doi:10.1039/b603494b
Altava, B., Burguete, M. I., Fraile, J. M., García, J. I., Luis, S. V., Mayoral, J. A., & Vicent, M. J. (2000). How Important is the Inert Matrix of Supported Enantiomeric Catalysts? Reversal of Topicity with Two Polystyrene Backbones. Angewandte Chemie, 112(8), 1563-1566. doi:10.1002/(sici)1521-3757(20000417)112:8<1563::aid-ange1563>3.0.co;2-r
Altava, B., Burguete, M. I., Fraile, J. M., García, J. I., Luis, S. V., Mayoral, J. A., & Vicent, M. J. (2000). How Important is the Inert Matrix of Supported Enantiomeric Catalysts? Reversal of Topicity with Two Polystyrene Backbones. Angewandte Chemie International Edition, 39(8), 1503-1506. doi:10.1002/(sici)1521-3773(20000417)39:8<1503::aid-anie1503>3.0.co;2-b
Kato, N., Mita, T., Kanai, M., Therrien, B., Kawano, M., Yamaguchi, K., … Shibasaki, M. (2006). Assembly State of Catalytic Modules as Chiral Switches in Asymmetric Strecker Amino Acid Synthesis. Journal of the American Chemical Society, 128(21), 6768-6769. doi:10.1021/ja060841r
Altava, B., Burguete, M. I., Garcı́a, J. I., Luis, S. V., Mayoral, J. A., & Vicent, M. J. (2001). A test for the coexistence of reactive intermediates with different molecular composition in chiral Lewis acid-catalysed reactions: the case of Ti-TADDOLate-catalysed Diels–Alder reactions. Tetrahedron: Asymmetry, 12(13), 1829-1835. doi:10.1016/s0957-4166(01)00267-1
Becerril, J., Bolte, M., Burguete, M. I., Galindo, F., García-España, E., Luis, S. V., & Miravet, J. F. (2003). Efficient Macrocyclization of U-Turn Preorganized Peptidomimetics: The Role of Intramolecular H-Bond and Solvophobic Effects. Journal of the American Chemical Society, 125(22), 6677-6686. doi:10.1021/ja0284759
Burguete, M. I., Collado, M., Escorihuela, J., Galindo, F., Garcı́a-Verdugo, E., Luis, S. V., & Vicent, M. J. (2003). Nickel complexes from α-amino amides as efficient catalysts for the enantioselective Et2Zn addition to benzaldehyde. Tetrahedron Letters, 44(36), 6891-6894. doi:10.1016/s0040-4039(03)01705-2
Soai, K., & Niwa, S. (1992). Enantioselective addition of organozinc reagents to aldehydes. Chemical Reviews, 92(5), 833-856. doi:10.1021/cr00013a004
Pu, L., & Yu, H.-B. (2001). Catalytic Asymmetric Organozinc Additions to Carbonyl Compounds. Chemical Reviews, 101(3), 757-824. doi:10.1021/cr000411y
Pu, L. (2003). Asymmetric alkynylzinc additions to aldehydes and ketones. Tetrahedron, 59(50), 9873-9886. doi:10.1016/j.tet.2003.10.042
Almansa, R., Guijarro, D., & Yus, M. (2007). Nickel-catalysed addition of dialkylzinc reagents to N-phosphinoyl- and N-sulfonylimines. Tetrahedron, 63(5), 1167-1174. doi:10.1016/j.tet.2006.11.056
Blay, G., Fernández, I., Marco-Aleixandre, A., & Pedro, J. R. (2006). Catalytic Asymmetric Addition of Dimethylzinc to α-Ketoesters, Using Mandelamides as Ligands. Organic Letters, 8(7), 1287-1290. doi:10.1021/ol052997m
in Principles and Methods in Supramolecular Chemistry, Wiley, New York, 2000, pp. 137–184.
Corma, A., Iglesias, M., Martín, M. V., Rubio, J., & Sanchez, F. (1992). Conjugate addition of diethylzinc to enones catalyzed by homogeneous and supported chiral Ni-complexes. Cooperative effect of the support on enantioselectivity. Tetrahedron: Asymmetry, 3(7), 845-848. doi:10.1016/s0957-4166(00)82180-1
Xu, Q., Zhu, G., Pan, X., & Chan, A. S. C. (2002). Enantioselective addition of diethylzinc to aldehydes catalyzed by optically activeC2-symmetrical bis-?-amino alcohols. Chirality, 14(9), 716-723. doi:10.1002/chir.10132
Dangel, B., Clarke, M., Haley, J., Sames, D., & Polt, R. (1997). Amino Acid-Derived Ligands for Transition Metals: Catalysis via a Minimalist Interpretation of a Metalloprotein. Journal of the American Chemical Society, 119(44), 10865-10866. doi:10.1021/ja972135j
Girard, C., & Kagan, H. B. (1998). Nichtlineare Effekte bei asymmetrischen Synthesen und stereoselektiven Reaktionen. Angewandte Chemie, 110(21), 3088-3127. doi:10.1002/(sici)1521-3757(19981102)110:21<3088::aid-ange3088>3.0.co;2-a
Girard, C., & Kagan, H. B. (1998). Nonlinear Effects in Asymmetric Synthesis and Stereoselective Reactions: Ten Years of Investigation. Angewandte Chemie International Edition, 37(21), 2922-2959. doi:10.1002/(sici)1521-3773(19981116)37:21<2922::aid-anie2922>3.0.co;2-1
in Advanced Asymmetric Catalysis (Ed.: ), Chapman & Hall, London, 1996, pp. 9–26;
Heller, D., Drexler, H.-J., Fischer, C., Buschmann, H., Baumann, W., & Heller, B. (2000). Wie lange kennen wir schon nichtlineare Effekte in der Katalyse? Angewandte Chemie, 112(3), 505-509. doi:10.1002/(sici)1521-3757(20000204)112:3<505::aid-ange505>3.0.co;2-z
Heller, D., Drexler, H.-J., Fischer, C., Buschmann, H., Baumann, W., & Heller, B. (2000). How Long Have Nonlinear Effects Been Known in the Field of Catalysis? Angewandte Chemie International Edition, 39(3), 495-499. doi:10.1002/(sici)1521-3773(20000204)39:3<495::aid-anie495>3.0.co;2-g
Blackmond, D. G. (2000). Kinetic Aspects of Nonlinear Effects in Asymmetric Catalysis. Accounts of Chemical Research, 33(6), 402-411. doi:10.1021/ar990083s
Steigelmann, M., Nisar, Y., Rominger, F., & Goldfuss, B. (2002). Homo- and Heterochiral Alkylzinc Fencholates: Linear or Nonlinear Effects in Dialkylzinc Additions to Benzaldehyde. Chemistry - A European Journal, 8(22), 5211-5218. doi:10.1002/1521-3765(20021115)8:22<5211::aid-chem5211>3.0.co;2-s
Kitamura, M., Suga, S., Oka, H., & Noyori, R. (1998). Quantitative Analysis of the Chiral Amplification in the Amino Alcohol-Promoted Asymmetric Alkylation of Aldehydes with Dialkylzincs. Journal of the American Chemical Society, 120(38), 9800-9809. doi:10.1021/ja981740z
Rasmussen, T., & Norrby, P.-O. (2003). Modeling the Stereoselectivity of the β-Amino Alcohol-Promoted Addition of Dialkylzinc to Aldehydes. Journal of the American Chemical Society, 125(17), 5130-5138. doi:10.1021/ja0292952
Ianni, J. C., Annamalai, V., Phuan, P.-W., Panda, M., & Kozlowski, M. C. (2006). A Priori Theoretical Prediction of Selectivity in Asymmetric Catalysis: Design of Chiral Catalysts by Using Quantum Molecular Interaction Fields. Angewandte Chemie, 118(33), 5628-5631. doi:10.1002/ange.200600329
Ianni, J. C., Annamalai, V., Phuan, P.-W., Panda, M., & Kozlowski, M. C. (2006). A Priori Theoretical Prediction of Selectivity in Asymmetric Catalysis: Design of Chiral Catalysts by Using Quantum Molecular Interaction Fields. Angewandte Chemie International Edition, 45(33), 5502-5505. doi:10.1002/anie.200600329
[-]