Mostrar el registro sencillo del ítem
dc.contributor.author | Bri Molinero, Diana | es_ES |
dc.contributor.author | García Pineda, Miguel | es_ES |
dc.contributor.author | Ramos Pascual, Francisco | es_ES |
dc.contributor.author | Lloret, Jaime | es_ES |
dc.date.accessioned | 2016-05-10T08:06:23Z | |
dc.date.available | 2016-05-10T08:06:23Z | |
dc.date.issued | 2015-10 | |
dc.identifier.issn | 1383-469X | |
dc.identifier.uri | http://hdl.handle.net/10251/63831 | |
dc.description.abstract | The necessity of energy-efficient systems in order to protect our environment, cope with global warming, and facilitate sustainable development is paramount for the researching world because the survival of the planet is at stake. Thus, optimizing the energy efficiency of wireless communications not only reduces environmental impact, but also cuts overall network costs and helps make communication more practical and affordable in a pervasive setting. This paper is focused on a solution to enhance the energy efficiency in outdoor wireless local area networks using the standard IEEE 802.11b/g. So, from a previous study about the weather s impact on the number of control frame errors and retransmissions, we propose a green cognitive algorithm that adapts wireless transmissions to the channel conditions caused by the weather. The goal is to reduce retransmissions and control errors in order to save energy and to enhance network performance. Our proposal is based on a mathematical analysis in which we see how the frame error rate is related to the power consumption according to the modulation scheme and data rate used by transmitters. Finally, several simulations show that the green cognitive algorithm presented in this paper involves significant energy savings for outdoors WLANs. | es_ES |
dc.description.sponsorship | This work has been supported by the Vice-Rectorate for Research, Innovation and Transfer of the Universitat Politecnica de Valencia through the programme of International Campus of Excellence funded by Ministry of Education of Spain, and through the programme of Predoctoral Research Grants (FPI-UPV). The authors would like to thank the Information and Communications Systems Office (ASIC), Borja Opticos Enterprise and Azimut Electronics Company for their collaboration and support. | en_EN |
dc.language | Inglés | es_ES |
dc.publisher | Springer Verlag (Germany) | es_ES |
dc.relation.ispartof | Mobile Networks and Applications | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Energy efficiency | es_ES |
dc.subject | MAC layer | es_ES |
dc.subject | Green cognitive algorithm | es_ES |
dc.subject | Outdoor WLAN | es_ES |
dc.subject | IEEE 802.11 | es_ES |
dc.subject | Weather’s Impact | es_ES |
dc.subject.classification | INGENIERIA TELEMATICA | es_ES |
dc.subject.classification | TEORIA DE LA SEÑAL Y COMUNICACIONES | es_ES |
dc.title | Improving energy-efficiency with a green cognitive algorithm to overcome weather's impact in 2.4 GHz wireless networks | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1007/s11036-015-0602-7 | |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Comunicaciones - Departament de Comunicacions | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Instituto de Investigación para la Gestión Integral de Zonas Costeras - Institut d'Investigació per a la Gestió Integral de Zones Costaneres | es_ES |
dc.description.bibliographicCitation | Bri Molinero, D.; García Pineda, M.; Ramos Pascual, F.; Lloret, J. (2015). Improving energy-efficiency with a green cognitive algorithm to overcome weather's impact in 2.4 GHz wireless networks. Mobile Networks and Applications. 20(5):673-691. doi:10.1007/s11036-015-0602-7 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | http://dx.doi.org/10.1007/s11036-015-0602-7 | es_ES |
dc.description.upvformatpinicio | 673 | es_ES |
dc.description.upvformatpfin | 691 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 20 | es_ES |
dc.description.issue | 5 | es_ES |
dc.relation.senia | 308202 | es_ES |
dc.contributor.funder | Universitat Politècnica de València | es_ES |
dc.contributor.funder | Ministerio de Educación | es_ES |
dc.description.references | Ad-hoc Advisory Group Report (2008) ICT for energy efficiency. DG-Information Society and Media, European Commission, Brussels | es_ES |
dc.description.references | Mills MP (2013) The cloud begins with coal, big data, big networks, big infraestructure and big power. Digital Power Group | es_ES |
dc.description.references | Rodrigues J (2013) Green communications and networking. Netw Protocol Algorithm 5(1):37–40 | es_ES |
dc.description.references | Serrano P, de la Oliva A, Patras P, Mancuso V, Banchs A (2012) Greening wireless communications: status and future directions. Comput Commun 35:1651–1661 | es_ES |
dc.description.references | Tsao SL, Huang CH (2011) A survey of energy efficient MAC protocols for IEEE 802.11 WLAN. Comput Commun 34(1):54–67 | es_ES |
dc.description.references | Lloret J, Sendra S, Coll H, Miguel Garcia M (2009) Saving energy in wireless local area sensor networks. Comput J 53(10):1658–1673 | es_ES |
dc.description.references | Serrano P, Garcia Saavedra A, Bianchi G, Banchs A, Azcorra A (2014) Per-frame energy consumption in 802.11 devices and its implication on modeling and design. IEEE/ACM Transactions on networking | es_ES |
dc.description.references | Sendra S, Lloret J, Garcia M, Toledo JF (2011) Power saving and energy optimization techniques for Wireless Sensor Networks. J Commun 6(6):439–459 | es_ES |
dc.description.references | IEEE (2012) IEEE Std 802.11™-2012 (Revision of IEEE Std 802.11-2007) part 11: wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) specifications. IEEE Computer Society, New York | es_ES |
dc.description.references | Khanna VK, Gupta HM, Maheshwari S (2008) A high throughput and low power ad-hoc wireless LAN protocol. Wirel Netw 14(1):1–16 | es_ES |
dc.description.references | Bri D, Ramos P, Lloret J, Garcia M (2012) The influence of meteorological variables on the performance of outdoor wireless local area networks. In: IEEE International Conference on Communications. Ottawa, Canada, 2012 | es_ES |
dc.description.references | Bri D, Garcia M, Lloret J, Misic J (2014) Measuring the weather’s impact on MAC layer over 2.4 GHz outdoor radio links. Measurement 61:221–233 | es_ES |
dc.description.references | Bri D, Fernandez-Diego M, Garcia M, Ramos F, Lloret J (2012) How the weather impacts on the performance of an outdoor WLAN. IEEE Commun Lett 16(8):1184–1187 | es_ES |
dc.description.references | Lombardo A, Panarello C, Schembra G (2013) EE-ARQ: a green ARQ-based algorithm for the transmission of video streams on noise wireless channels. Netw Protocol Algorithm 5(1):43–70 | es_ES |
dc.description.references | Wang L, Manner J (2010) Energy Consumption Analysis of WLAN, 2G and 3G interfaces. In: Proceedings of the 2010 IEEE/ACM Int’l Conference on Green Computing and Communications & Int’l Conference on Cyber, Physical and Social Computing (GREENCOM-CPSCOM ‘10). Washington, DC, USA | es_ES |
dc.description.references | Noda C, Prabh S, Alves M, Voigt T (2013) On packet size and error correction optimisations in low-power wireless networks. In: IEEE International Conference on Sensing, Communications and Networking (SECON). New Orleans, USA | es_ES |
dc.description.references | Nasaruddin, Andriani M, Melinda, Irhamsyah M (2013) Analysis of energy efficiency for Wi-Fi 802.11b. In: IEEE International Conference on Communication, Networks and Satellite (COMNETSAT), Yogyakarta, Indonesia | es_ES |
dc.description.references | Gomez K, Riggio R, Rasheed T, Granelli F (2011) Analysing the energy consumption behaviour of WiFi networks. In: Online Conference onGreen Communications (GreenCom) | es_ES |
dc.description.references | Sweedy AM, Semeia AI, Sayed SY, Konber AH (2010) The effect of frame length, fragmentation and RTS/CTS mechanism on IEEE 802.11 MAC performance. In: 10th International Conference on Intelligent Systems Design and Applications (ISDA). Cairo, Egypt, 2010. | es_ES |
dc.description.references | Tauber M, Bhatti SN, Yu Y (2011) Application level energy and performance measurements in a wireless LAN. In: IEEE/ACM International Conference on Green Computing and Communications (GreenCom). Chengdu, China | es_ES |
dc.description.references | Krishnan M, Haghani E, Zakhor A (2011) Packet length adaptation in WLANs with hidden nodes and time-varying channels. In: Global Telecommunications Conference (GLOBECOM 2011). Houston, Texas, USA | es_ES |
dc.description.references | Song W, Krishnan MN, Zakhor A (2009) Adaptive packetization for error-prone transmission over 802.11 WLANs with Hidden Terminals. In: the 11th international workshop on multimedia signal processing (MMSP’09), Rio de Janeiro, Brazil | es_ES |
dc.description.references | Naydenov GA, Stoyanov PS (2007) Bit error period determination and optimal frame length prediction for a noisy communication channel. AU J Technol 11(1):7–13 | es_ES |
dc.description.references | Balaji B, Tamma B, Manoj B (2010) A novel power saving strategy for greening IEEE 802.11 based wireless networks. In: Global Telecommunications Conference (GLOBECOM 2010). Miami, USA | es_ES |
dc.description.references | Zhou J, Jacobsson M, Niemegeers I (2010) Link quality-based transmission power adaptation for reduction of energy consumption and interference. EURASIP J Wirel Commun Netw, vol. open access, pp. 1–17 | es_ES |
dc.description.references | Le B, Rondeau TW, Bostian CW (2007) Cognitive radio realities. Wirel Commun Mob Comput 7(9):1037–1048 | es_ES |
dc.description.references | T. W. G. f. W. Standards “IEEE 802.11 Wireless Local Area Networks,” [Online]. Available: http://grouper.ieee.org/groups/802/11/. Accessed Aug 2014 | es_ES |
dc.description.references | Vassis D, Kormentzas G, Rouskas A, Maglogiannis I (2005) The IEEE 802.11 g standard for high data. IEEE Netw 19(3):21–26 | es_ES |
dc.description.references | Scalia L, Widmer J, Aad I (2010) On the side effects of packet detection sensitivity in IEEE 802.11 interference management. In: IEEE International Symposium on a World of Wireless Mobile and Multimedia Networks (WoWMoM), Montreal, Canada | es_ES |
dc.description.references | Boano C, Brown J, He Z, Roedig U, Voigt T (2010) Low-power radio communication in industrial outdoor deployments: the impact of weather conditions and ATEX-compliance. Lect Notes Inst Comput Sci Soc Inform Telecommun Eng 29:159–176 | es_ES |
dc.description.references | Cakaj S (2009) Rain attenuation impact on performance of satellite ground stations for Low Earth Orbiting (LEO) Satellites in Europe. Int J Commun Netw Syst Sci 6:480–485 | es_ES |
dc.description.references | Luccini M (2013) Joint use of on-board reconfigurable antenna pattern and adaptive coding and modulation in satellite communications at high frequency bands, Ph.D. dissertation. Dept. Electrical and Computer Engineering, University of Western Ontario | es_ES |
dc.description.references | Crane RK (2003) Propagation handbook for wireless communication system design. CRC Press | es_ES |
dc.description.references | ITU (2013) Recommendation ITU-R P.676-10 attenuation by atmospheric gases. ITU, Geneva, P Series | es_ES |
dc.description.references | ITU (2013) Recommendation ITU-R P.840-6 attenuation due to clouds and fog. ITU, Geneva, P Series | es_ES |
dc.description.references | ITU (2005) Recommendation ITU-R P.838-3 specific attenuation model for rain for use in prediction methods. ITU, Geneva, P Series | es_ES |
dc.description.references | Bri D, Sendra S, Coll H, Lloret J (2010) How the atmospheric variables affect to the WLAN datalink layer parameters. In: The Sixth Advanced International Conference on Telecommunications. Barcelona, Spain | es_ES |
dc.description.references | Chok NS (2010) Pearson’s versus Spearman’s and Kendall’s correlation, Thesis. University of Pittsburgh | es_ES |
dc.description.references | Sheskin DJ (2003) Handbook of Parametric and Nonparametric Statistical Procedures: Third Edition, CRC Press, 2003 | es_ES |
dc.description.references | IBM “SPSS Statistical Software,” [Online]. Available: http://www-01.ibm.com/software/es/analytics/spss/ . Accessed Feb 2015 | es_ES |
dc.description.references | Thomas RW, DaSilva LA, MacKenzie AB (2005) Cognitive networks. In: 1st IEEE International Symposium on New Frontiers in Dynamic Spectrum Access Networks. Baltimore | es_ES |
dc.description.references | Thomas RW, Friend DH, DaSilva LA, MacKenzie AB (2006) Cognitive networks: adaptation and learning to achieve end-to-end performance objectives. IEEE Commun Mag 44(12):51–57 | es_ES |
dc.description.references | Gür G, Alagöz F (2011) Green wireless communications via cognitive dimension: an overview. IEEE Netw 25(2):50–56 | es_ES |
dc.description.references | IEEE Std 802.15.2 (2003) Coexistence of wireless personal area networks with other wireless devices operating inunlicensed frequency bands. IEEE | es_ES |
dc.description.references | Goldsmith A (2005) Wireless communications. Cambridge University Press, Cambridge | es_ES |
dc.description.references | IEEE Std. 802.11a (1999) Supplement to IEEE standard for information technology—telecommunications and information exchange between systems—local and metropolitan area networks—specific requirements. Part 11: wireless LAN Medium Access Control (MAC) and Physical Layer (PHY). IEEE | es_ES |
dc.description.references | Toorisaka W, Hasegawa G, Murata M (2012) Power consumption analysis of data transmission in IEEE 802.11 multi-hop networks. de ICNS 2012, The Eighth International Conference on Networking and Services. St. Maarten, Netherlands Antilles | es_ES |
dc.description.references | Feeney LM, Nilsson M (2001) Investigating the energy consumption of a wireless network interface in an ad hoc networking environment. de IEEE INFOCOM 2001. Twentieth Annual Joint Conference of the IEEE Computer and Communications Societies. Proceedings, Anchorage, Alaska USA | es_ES |
dc.description.references | Texas I CC3000 I.E. 802.11b/g Solution Module. CC3000 I.E. 802.11b/g solution module, [Online]. Available: http://www.ti.com/product/CC3000/technicaldocuments | es_ES |
dc.description.references | Fortuna C, Mohorcic M (2009) Trends in the development of communication networks: cognitive networks. Comput Netw 53(9):1354–1376 | es_ES |
dc.description.references | Riverbed Riverbed Modeler Wireless Suite. [En línea]. Available: http://www.riverbed.com/products/performance-management-control/network-performance-management/network-simulation.html | es_ES |
dc.description.references | Patil KP, Barge S, Skouby KE, Prasad R (2014) Spectrum occupancy information in support of adaptive spectrum sensing for cognitive radio. Netw Protocol Algorithm 6(1):76–86 | es_ES |