- -

Comparative transcriptional profiling analysis of developing melon (Cucumis melo L.) fruit from climacteric and non-climacteric varieties

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

Comparative transcriptional profiling analysis of developing melon (Cucumis melo L.) fruit from climacteric and non-climacteric varieties

Show simple item record

Files in this item

dc.contributor.author Saladie, Montserrat es_ES
dc.contributor.author Cañizares Sales, Joaquín es_ES
dc.contributor.author Michael A. Phillips es_ES
dc.contributor.author Rodriguez Concepcion, Manuel es_ES
dc.contributor.author Larrigaudière, Christian es_ES
dc.contributor.author Gibon, Yves es_ES
dc.contributor.author Stitt, Mark es_ES
dc.contributor.author Lunn, John Edward es_ES
dc.contributor.author Garcia Mas, Jordi es_ES
dc.date.accessioned 2016-05-10T10:02:29Z
dc.date.available 2016-05-10T10:02:29Z
dc.date.issued 2015-06-09
dc.identifier.issn 1471-2164
dc.identifier.uri http://hdl.handle.net/10251/63839
dc.description.abstract [EN] Background: In climacteric fruit-bearing species, the onset of fruit ripening is marked by a transient rise in respiration rate and autocatalytic ethylene production, followed by rapid deterioration in fruit quality. In non-climacteric species, there is no increase in respiration or ethylene production at the beginning or during fruit ripening. Melon is unusual in having climacteric and non-climacteric varieties, providing an interesting model system to compare both ripening types. Transcriptomic analysis of developing melon fruits from Védrantais and Dulce (climacteric) and Piel de sapo and PI 161375 (non-climacteric) varieties was performed to understand the molecular mechanisms that differentiate the two fruit ripening types. Results: Fruits were harvested at 15, 25, 35 days after pollination and at fruit maturity. Transcript profiling was performed using an oligo-based microarray with 75 K probes. Genes linked to characteristic traits of fruit ripening were differentially expressed between climacteric and non-climacteric types, as well as several transcription factor genes and genes encoding enzymes involved in sucrose catabolism. The expression patterns of some genes in PI 161375 fruits were either intermediate between. Piel de sapo and the climacteric varieties, or more similar to the latter. PI 161375 fruits also accumulated some carotenoids, a characteristic trait of climacteric varieties. Conclusions: Simultaneous changes in transcript abundance indicate that there is coordinated reprogramming of gene expression during fruit development and at the onset of ripening in both climacteric and non-climacteric fruits. The expression patterns of genes related to ethylene metabolism, carotenoid accumulation, cell wall integrity and transcriptional regulation varied between genotypes and was consistent with the differences in their fruit ripening characteristics. There were differences between climacteric and non-climacteric varieties in the expression of genes related to sugar metabolism suggesting that they may be potential determinants of sucrose content and post-harvest stability of sucrose levels in fruit. Several transcription factor genes were also identified that were differentially expressed in both types, implicating them in regulation of ripening behaviour. The intermediate nature of PI 161375 suggested that classification of melon fruit ripening behaviour into just two distinct types is an over-simplification, and that in reality there is a continuous spectrum of fruit ripening behaviour es_ES
dc.description.sponsorship We wish to thank Marta Casado for assistance with qRT-PCR analysis, Anna Orozco and Rosa Rodriguez for help with carotenoid measurements, Kostas Alexiou for uploading the microarray data at GEO and Walter Sanseverino for obtaining the correspondence of the microarray contigs with the melon annotated genes. We thank Beatrice Encke and Nicole Krohn for technical help with the sugar analysis. We also thank Laura Pascual for a critical reading of the manuscript. MSa was supported by a JAE-Doc grant from the Spanish Ministry of Science. This work was supported by the Spanish Ministry of Science and Innovation (MICINN project GEN2006-27773-C2-1-E to JGM) and the German Federal Ministry of Education and Research (BMBF project 0313987 to MSt) within the framework of the EU Framework 6 ERA-NET Plant Genomics programme. en_EN
dc.language Inglés es_ES
dc.publisher BioMed Central es_ES
dc.relation Spanish Ministry of Science es_ES
dc.relation Spanish Ministry of Science and Innovation (MICINN) GEN2006-27773-C2-1-E es_ES
dc.relation German Federal Ministry of Education and Research (BMBF) 0313987 es_ES
dc.relation.ispartof BMC Genomics es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Carotenoids es_ES
dc.subject Fruit ripening es_ES
dc.subject Ethylene es_ES
dc.subject Fruit development es_ES
dc.subject Microarray es_ES
dc.subject Sucrose es_ES
dc.subject.classification GENETICA es_ES
dc.title Comparative transcriptional profiling analysis of developing melon (Cucumis melo L.) fruit from climacteric and non-climacteric varieties es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1186/s12864-015-1649-3
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Biotecnología - Departament de Biotecnologia es_ES
dc.description.bibliographicCitation Saladie, M.; Cañizares Sales, J.; Michael A. Phillips; Rodriguez Concepcion, M.; Larrigaudière, C.; Gibon, Y.; Stitt, M.... (2015). Comparative transcriptional profiling analysis of developing melon (Cucumis melo L.) fruit from climacteric and non-climacteric varieties. BMC Genomics. 16(440):1-20. https://doi.org/10.1186/s12864-015-1649-3 es_ES
dc.description.accrualMethod Senia es_ES
dc.relation.publisherversion https://dx.doi.org/10.1186/s12864-015-1649-3 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 20 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 16 es_ES
dc.description.issue 440 es_ES
dc.relation.senia 292292 es_ES
dc.identifier.pmid 26054931 en_EN
dc.identifier.pmcid PMC4460886 en_EN
dc.relation.references McMurchie EJ, McGlasson WB, Eaks IL. Treatment of fruit with propylene gives information about the biogenesis of ethylene. Nature. 1972;237:235–6. es_ES
dc.relation.references Giovannoni JJ. Genetic regulation of fruit development and ripening. Plant Cell. 2004;16:S170–80. es_ES
dc.relation.references Yamaguchi M, Hughes DL, Yabumoto K, Jennings WG. Quality of cantaloupe muskmelons: Variability and attributes. Scientia Hort. 1977;6:59–70. es_ES
dc.relation.references Seymour GB, McGlasson WB. Melons. In: Seymour GB, Taylor JE, Tucker GA, editors. Biochemistry of fruit ripening. London: Chapman & Hall; 1993. p. 273-290. es_ES
dc.relation.references Pech JC, Balague C, Latché A, Bouzayen M. Post-harvest physiology of climacteric fruits: recent developments in the biosynthesis and action of ethylene. Sci Aliments. 1994;14:3–15. es_ES
dc.relation.references Latché A, Ayub RA, Martinez G, Guis M, Ben Amor M, Rombaldi CV, et al. Biosynthèse et mode d’action de l’hormone végétale éthylène. Fruits. 1995;50:379–96. es_ES
dc.relation.references Moore S, Payton P, Wright M, Tanksley S, Giovannoni J. Utilization of tomato microarrays for comparative gene expression analysis in the Solanaceae. J Exp Bot. 2005;56:2885–95. es_ES
dc.relation.references Giovannoni JJ. Fruit ripening mutants yield insights into ripening control. Curr Opin Plant Biol. 2007;10:283–9. es_ES
dc.relation.references Saladié M, Rose JKC, Cosgrove DJ, Catalá C. Characterization of a new xyloglucan endotransglucosylase/hydrolase (XTH) from ripening tomato fruit and implications for the diverse modes of enzymic action. Plant J. 2006;47:282–95. es_ES
dc.relation.references Stepanova AN, Alonso JM. Ethylene signalling and response: where different regulatory modules meet. Curr Opin Plant Sci. 2009;12:548–55. es_ES
dc.relation.references Alexander L, Grierson D. Ethylene biosynthesis and action in tomato: a model for climacteric fruit ripening. J Exp Bot. 2002;53:2039–55. es_ES
dc.relation.references Klee HJ. Ethylene signal transduction. Moving beyond Arabidopsis. Plant Physiol. 2004;135:660–7. es_ES
dc.relation.references Adams-Phillips L, Barry C, Giovannoni J. Signal transduction systems regulating fruit ripening. Trends Plant Sci. 2004;9:331–8. es_ES
dc.relation.references Vrebalov J, Ruezinsky D, Padmanabhan V, White R, Medrano D, Drake R, et al. A MADS-box gene necessary for fruit ripening at the tomato ripening-inhibitor (rin) locus. Science. 2002;296:343–6. es_ES
dc.relation.references Giovannoni JJ, Tanksley S, Vrebalov J, Noensie F. NOR gene compositions and methods for use thereof. US Patent 6762347_B1. July 13, 2004. es_ES
dc.relation.references Manning K, Tor M, Poole M, Hong Y, Thompson AJ, King GJ, et al. A naturally occurring epigenetic mutation in a gene encoding an SBP-box transcription factor inhibits tomato fruit ripening. Nat Genet. 2006;38:948–52. es_ES
dc.relation.references Itkin M, Seybold H, Breitel D, Rogachev I, Meir S, Aharoni A. TOMATO AGAMOUS-LIKE 1 is a component of the fruit ripening regulatory network. Plant J. 2009;60:1081–95. es_ES
dc.relation.references Lin Z, Hong Y, Yin M, Li C, Zhang K, Grierson D. A tomato HD-Zip homeobox protein, LeHB-1, plays an important role in floral organogenesis and ripening. Plant J. 2008;55:301–10. es_ES
dc.relation.references Chung M-Y, Vrebalov J, Alba R, Lee JM, McQuinn R, Chung J-D, et al. A tomato (Solanum lycopersicum) APETALA2/ERF gene, SlAP2a, is a negative regulator of fruit ripening. Plant J. 2011;64:936–47. es_ES
dc.relation.references Karlova R, Rosin FM, Busscher-Lange J, Parapunova V, Do PT, Fernie AR, et al. Transcriptome and metabolite profiling show that APETALA2a is a major regulator of tomato fruit ripening. Plant Cell. 2011;23:923–41. es_ES
dc.relation.references Seymour GB, Chapman NH, Chew BL, Rose JKC. Regulation of ripening and opportunities for control in tomato and other fruits. Plant Biotechnol J. 2013;11:269–78. es_ES
dc.relation.references Klee HJ, Giovannoni JJ. Genetics and control of tomato fruit ripening and quality attributes. Annu Rev Genet. 2011;45:41–59. es_ES
dc.relation.references Bemer M, Karlova R, Ballester AR, Tikunov YM, Bovy AG, Wolters-Arts M, et al. The tomato FRUITFUL homologs TDR4/FUL1 and MBP7/FUL2 regulate ethylene-Independent aspects of fruit ripening. Plant Cell. 2012;24:4437–51. es_ES
dc.relation.references Fujisawa M, Shima Y, Higuchi N, Nakano T, Koyama Y, Kasumi T, et al. Direct targets of the tomato-ripening regulator RIN identified by transcriptome and chromatin immunoprecipitation analyses. Planta. 2012;235:1107–22. es_ES
dc.relation.references Kumar R, Sharma MK, Kapoor S, Tyagi AK, Sharma A. Transcriptome analysis of rin mutant fruit and in silico analysis of promoters of differentially regulated genes provides insight into LeMADS-RIN-regulated ethylene-dependent as well as ethylene-independent aspects of ripening in tomato. Mol Genet Genom. 2012;287:189–203. es_ES
dc.relation.references Zhong S, Fei Z, Chen Y-R, Zheng Y, Huang M, Vrebalov J, et al. Single-base resolution methylomes of tomato fruit development reveal epigenome modifications associated with ripening. Nat Biotechnol. 2013;31:154–9. es_ES
dc.relation.references Wilkinson JQ, Lanahan MB, Conner TW, Klee HJ. Identification of mRNAs with enhanced expression in ripening strawberry fruit using polymerase chain reaction differential display. Plant Mol Biol. 1995;27:1097–108. es_ES
dc.relation.references Manning K. Isolation of a set of ripening-related genes from strawberry: Their identification and possible relationship to fruit quality traits. Planta. 1998;205:622–31. es_ES
dc.relation.references Aharoni A, Keizer LC, Bouwmeester HJ, Sun Z, Alvarez-Huerta M, Verhoeven HA, et al. Identification of the SAAT gene involved in strawberry flavor biogenesis by use of DNA microarrays. Plant Cell. 2000;12:647–62. es_ES
dc.relation.references Osorio S, Alba R, Nikoloski Z, Kochevenko A, Fernie AR, Giovannoni JJ. Integrative comparative analyses of transcript and metabolite profiles from pepper and tomato ripening and development stages uncovers species-specific patterns of network regulatory behavior. Plant Physiol. 2012;159:1713–29. es_ES
dc.relation.references Ezura H, Owino WO. Melon ripening and ethylene. Plant Sci. 2008;175:121–9. es_ES
dc.relation.references Pech JC, Bouzayen M, Latché A. Climacteric fruit ripening: ethylene-dependent and independent regulation of ripening pathways in melon fruit. Plant Sci. 2008;175:114–20. es_ES
dc.relation.references Vegas J, Garcia-Mas J, Monforte AJ. Interaction between QTLs induces an advance in ethylene biosynthesis during melon fruit ripening. Theor Appl Genet. 2013;126:1531–44. es_ES
dc.relation.references Lyons JM, Pratt HK, McGlasson WB. Ethylene production, respiration, and internal gas concentrations in cantaloupe fruits at various stages of maturity. Plant Physiol. 1962;37:31–26. es_ES
dc.relation.references Hadfield KA, Dang T, Guis M, Pech JC, Bouzayen M, Bennett AB. Characterization of ripening-regulated cDNAs and their expression in ethylene-suppressed Charentais melon fruit. Plant Physiol. 2000;122:977–83. es_ES
dc.relation.references Ayub R, Guis M, Ben Amor M, Gillot L, Roustan JP, Latché A, et al. Expression of ACC oxidase antisense gene inhibits ripening of cantaloupe melon fruits. Nat Biotechnol. 1996;14:862–6. es_ES
dc.relation.references Monforte AJ, Oliver M, Gonzalo MJ, Alvarez JM, Dolcet-Sanjuan R, Arus P. Identification of quantitative trait loci involved in fruit quality traits in melon (Cucumis melo L.). Theor Appl Genet. 2004;108:750–8. es_ES
dc.relation.references Cuevas HE, Staub JE, Simon PW, Zalapa JE. A consensus linkage map identifies genomic regions controlling fruit maturity and beta-carotene-associated flesh color in melon (Cucumis melo L.). Theor Appl Genet. 2009;119:741–56. es_ES
dc.relation.references Bian W, Barsan C, Egea I, Purgatto E, Chervin C, Zouine M, et al. Metabolic and molecular events occurring during chromoplast biogenesis. J Bot. 2011;10:1–13. es_ES
dc.relation.references Pratt HK, Goeschl JD, Martin FW. Fruit growth and development, ripening, and role of ethylene in honey dew muskmelon. J Am Soc Hortic Sci. 1977;102:203–10. es_ES
dc.relation.references Lester GE, Dunlap JR. Physiological-changes during development and ripening of perlita muskmelon fruits. Sci Hortic. 1985;26:323–31. es_ES
dc.relation.references Rose JKC, Hadfield KA, Labavitch JM, Bennett AB. Temporal sequence of cell wall disassembly in rapidly ripening melon fruit. Plant Physiol. 1998;117:345–61. es_ES
dc.relation.references Nishiyama K, Guis M, Rose JK, Kubo Y, Bennett KA, Wangjin L, et al. Ethylene regulation of fruit softening and cell wall disassembly in Charentais melon. J Exp Bot. 2007;58:1281–90. es_ES
dc.relation.references Portnoy V, Diber A, Pollock S, Karchi H, Lev S, Tzuri G, et al. Use of non-normalized, non-amplified cDNA for 454-based RNA sequencing of fleshy melon fruit. Plant Genome. 2011;4:1. es_ES
dc.relation.references Dai N, Cohen S, Portnoy V, Tzuri G, Harel-Beja R, Pompan-Lotan M, et al. Metabolism of soluble sugars in developing melon fruit: a global transcriptional view of the metabolic transition to sucrose accumulation. Plant Mol Biol. 2011;76:1–18. es_ES
dc.relation.references Corbacho J, Romojaro F, Pech JC, Latché A, Gomez-Jimenez MC. Transcriptomic events involved in melon mature-fruit abscission comprise the sequential induction of cell-wall degrading genes coupled to a stimulation of endo and exocytosis. PLoS One. 2013;8:e58363. es_ES
dc.relation.references Mascarell-Creus A, Cañizares J, Vilarrasa-Blasi J, Mora-García S, Blanca J, Gonzalez-Ibeas D, et al. An oligo-based microarray offers novel transcriptomic approaches for the analysis of pathogen resistance and fruit quality traits in melon (Cucumis melo L). BMC Genomics. 2009;10:e467. es_ES
dc.relation.references Garcia-Mas J, Benjak A, Sanseverino W, Bourgeois M, Mir G, Gonzalez VM, et al. The genome of melon (Cucumis melo L.). Proc Natl Acad Sci U S A. 2012;109:11872–7. es_ES
dc.relation.references Gonzalez-Ibeas D, Cañizares J, Aranda MA. Microarray analysis shows that recessive resistance to Watermelon mosaic virus in melon is associated with the induction of defense response genes. Mol Plant Microbe Interact. 2012;25:107–18. es_ES
dc.relation.references Roig C, Fita A, Ríos G, Hammond JP, Nuez F, Picó B. Root transcriptional responses of two melon genotypes with contrasting resistance to Monosporascus cannonballus (Pollack et Uecker) infection. BMC Genomics. 2012;13:601–12. es_ES
dc.relation.references Conesa A, Nueda MJ, Ferrer A, Talón M. MaSigPro: a method to identify significantly differential expression profiles in time-course microarray experiments. Bioinformatics. 2006;22:1096–102. es_ES
dc.relation.references Al-Shahrour F, Díaz-Uriarte R, Dopazo J. FatiGO: a web tool for finding significant associations of Gene Ontology terms with groups of genes. Bioinformatics. 2004;20:578–80. es_ES
dc.relation.references Pilati S, Perazzolli M, Malossini A, Cestaro A, Demattè L, Fontana P, et al. Genome-wide transcriptional analysis of grapevine berry ripening reveals a set of genes similarly modulated during three seasons and the occurrence of an oxidative burst at vèraison. BMC Genomics. 2007;8:428. es_ES
dc.relation.references Miki T, Yamamoto M, Nakagawa H, Ogura N, Mori H, Imaseki H, et al. Nucleotide sequence of a cDNA for 1-aminocyclopropane-1-carboxylate synthase from melon fruits. Plant Physiol. 1995;107:297–8. es_ES
dc.relation.references Yamamoto M, Miki T, Ishiki Y, Fujinami K, Yanagisawa Y, Nakagawa H, et al. The synthesis of ethylene in melon fruit during the early stage of ripening. Plant Cell Physiol. 1995;36:591–59. es_ES
dc.relation.references Lehman A, Black R, Ecker JR. HOOKLESS1, an ethylene response gene, is required for differential cell elongation in the Arabidopsis hypocotyl. Cell. 1996;85:183–94. es_ES
dc.relation.references Elitzur T, Vrebalov J, Giovannoni JJ, Goldschmidt EE, Friedman H. The regulation of MADS-box gene expression during ripening of banana and their regulatory interaction with ethylene. J Exp Bot. 2010;61(5):1523–35. es_ES
dc.relation.references Yang Y, Wu Y, Pirrello J, Regad F, Bouzayen M, Deng W, et al. Silencing Sl-EBF1 and Sl-EBF2 expression causes constitutive ethylene response phenotype, accelerated plant senescence, and fruit ripening in tomato. J Exp Bot. 2010;61(3):697–708. es_ES
dc.relation.references Tanaka R, Oster U, Kruse E, Rudiger W, Grimm B. Reduced activity of geranylgeranyl reductase leads to loss of chlorophyll and tocopherol and to partially geranylgeranylated chlorophyll in transgenic tobacco plants expressing antisense RNA for geranylgeranyl reductase. Plant Physiol. 1999;120:695–704. es_ES
dc.relation.references Kim J, DellaPenna D. Defining the primary route for lutein synthesis in plants: the role of Arabidopsis carotenoid beta-ring hydroxylase CYP97A3. Proc Natl Acad Sci U S A. 2006;103:3474–9. es_ES
dc.relation.references Welsch R, Maass D, Voegel T, Dellapenna D, Beyer P. Transcription factor RAP2.2 and its interacting partner SINAT2: stable elements in the carotenogenesis of Arabidopsis leaves. Plant Physiol. 2007;145:1073–85. es_ES
dc.relation.references Neta-Sharir I, Isaacson T, Lurie S, Weiss D. Dual role for tomato heat shock protein 21: protecting photosystem II from oxidative stress and promoting color changes during fruit maturation. Plant Cell. 2005;17:1829–38. es_ES
dc.relation.references Li L, Paolillo DJ, Parthasarathy MV, Dimuzio EM, Garvin DF. A novel gene mutation that confers abnormal patterns of beta-carotene accumulation in cauliflower (Brassica oleracea var. botrytis). Plant J. 2001;26:59–67. es_ES
dc.relation.references Lu S, Van Eck J, Zhou X, Lopez AB, Halloran DM, Cosman KM, et al. The cauliflower Or gene encodes a DnaJ cysteine-rich domain-containing protein that mediates high levels of beta-carotene accumulation. Plant Cell. 2006;18:3594–605. es_ES
dc.relation.references Akhtar MS, Goldschmidt EE, John I, Rodoni S, Matile P, Grierson D. Altered patterns of senescence and ripening in gf, a stay-green mutant of tomato. J Exp Bot. 1999;50(336):1115–22. es_ES
dc.relation.references Saeed AI, Sharov V, White J, Li J, Liang W, Bhagabati N, et al. TM4: a free, open-source system for microarray data management and analysis. Biotechniques. 2003;34:374–8. es_ES
dc.relation.references Lohse M, Nunes-Nesi A, Krüger P, Nagel A, Hannemann J, Giorgi FM, et al. Robin: an intuitive wizard application for R-based expression microarray quality assessment and analysis. Plant Physiol. 2010;153:642–51. es_ES
dc.relation.references Thimm O, Bläsing O, Gibon Y, Nagel A, Meyer S, Krüger P, et al. MapMan: a user-driven tool to display genomics data sets onto diagrams of metabolic pathways and other biological processes. Plant J. 2004;37:914–39. es_ES
dc.relation.references Usadel B, Poree F, Nagel A, Lohse M, Czedik-Eysenberg A, Stitt M. A guide to using MapMan to visualize and compare omics data in plants: a case study in the crop species, maize. Plant Cell Environ. 2009;32:1211–29. es_ES
dc.relation.references Costa F, Alba R, Schouten H, Soglio V, Gianfranceschi L, Serra S, et al. Use of homologous and heterologous gene expression profiling tools to characterize transcription dynamics during apple fruit maturation and ripening. BMC Plant Biol. 2010;10:229. es_ES
dc.relation.references Zhang C, Yu X, Ayre BG, Turgeon R. The origin and composition of cucurbit “phloem” exudate. Plant Physiol. 2012;158:1873–82. es_ES
dc.relation.references Rose JKC, Saladié M, Catalá C. The plot thickens: new perspectives of primary cell wall modification. Current Opin Plant Biol. 2004;7:296–301. es_ES
dc.relation.references Manning K. Changes in gene-expression during strawberry fruit ripening and their regulation by auxin. Planta. 1994;194:62–8. es_ES
dc.relation.references Saladié M, Wright LP, Garcia-Mas J, Rodriguez-Concepcion M, Phillips MA. The 2-C-methylerithritol 4-phosphate pathway in melon is regulated by specialized isoforms for the first and last steps. J Exp Bot. 2014;65:5077–92. es_ES
dc.relation.references Périn C, Gomez-Jimenez M, Hagen L, Dogimont C, Pech JC, Latché A, et al. Molecular and genetic characterization of a non-climacteric phenotype in melon reveals two loci conferring altered ethylene response in fruit. Plant Physiol. 2002;129:300–9. es_ES
dc.relation.references Eduardo I, Arús P, Monforte AJ. Development of a genomic library of near isogenic lines (NILs) in melon (Cucumis melo L.) from the exotic accession PI161375. Theor Appl Genet. 2005;112:139–48. es_ES
dc.relation.references Stitt M, McLilley R, Gerhardt R, Heldt HW. Metabolite levels in specific cells and subcellular compartments of plant leaves. Meth Enzymol. 1989;174:518–52. es_ES
dc.relation.references Ibdah M, Azulay Y, Portnoy V, Wasserman B, Bar E, Meir A, et al. Functional characterization of CmCCD1, a carotenoid cleavage dioxygenase from melon. Phytochemistry. 2006;67:1579–89. es_ES
dc.relation.references Rodriguez-Concepcion M, Fores O, Martinez-Garcia JF, Gonzalez V, Phillips MA, Ferrer A, et al. Distinct light-mediated pathways regulate the biosynthesis and exchange of isoprenoid precursors during Arabidopsis seedling development. Plant Cell. 2004;16:144–56. es_ES
dc.relation.references Fraser PD, Pinto MES, Holloway DE, Bramley PM. Application of high-performance liquid chromatography with photodiode array detection to the metabolic profiling of plant isoprenoids. Plant J. 2000;24:551–8. es_ES
dc.relation.references Burns J, Fraser PD, Bramley PM. Identification and quantification of carotenoids, tocopherols and chlorophylls in commonly consumed fruits and vegetables. Phytochemistry. 2003;62:939–47. es_ES
dc.relation.references Taylor KL, Brackenridge AE, Vivier MA, Oberholster A. High-performance liquid chromatography profiling of the major carotenoids in Arabidopsis thaliana leaf tissue. J Chromatogr A. 2006;1121:83–91. es_ES
dc.relation.references Hartigan JA, Wong MA. A k-means clustering algorithm. Appl Stat. 1979;28:100–8. es_ES
dc.relation.references Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, et al. Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. Nat Genet. 2000;25:25–9. es_ES
dc.relation.references Vandesompele J, De Preter K, Pattyn F, Poppe B, Van Roy N, De Paepe A, et al. Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol. 2002;3:0034.1. es_ES
dc.relation.references Pfaffl MW, Tichopad A, Prgomet C, Neuvians TP. Determination of stable housekeeping genes, differentially regulated target genes and sample integrity: BestKeeper - Excel-based tool using pair-wise correlations. Biotechnol Lett. 2004;26:509–15. es_ES
dc.relation.references Gonzalez-Ibeas D, Blanca J, Roig C, González-To M, Picó B, Truniger V, et al. MELOGEN: An EST database for melon functional genomics. BMC Genomics. 2007;8:306. es_ES
dc.relation.references Pfaffl MW. A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res. 2001;29:e45. es_ES
dc.relation.references Masoudi-Nejad A, Goto S, Jauregui R, Ito M, Kawashima S, Moriya Y, et al. EGENES: transcriptome-based plant database of genes with metabolic pathway information and expressed sequence tag indices in KEGG. Plant Physiol. 2007;144:857–66. es_ES
dc.relation.references Usadel B, Nagel A, Thimm O, Redestig H, Blaesing OE, Palacios-Rojas N, et al. Extension of the visualisation tool MapMan to allow statistical analysis of arrays, display of corresponding genes and comparison with known responses. Plant Physiol. 2005;138:1195–204. es_ES
dc.relation.references Benjamini Y, Hochberg Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc Ser B Stat Methodol. 1995;57:289–300. es_ES


This item appears in the following Collection(s)

Show simple item record