- -

Multifunctional, Defect-Engineered Metal-Organic Frameworks with Ruthenium Centers: Sorption and Catalytic Properties

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Multifunctional, Defect-Engineered Metal-Organic Frameworks with Ruthenium Centers: Sorption and Catalytic Properties

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Kozachuk, O. es_ES
dc.contributor.author Luz Mínguez, Ignacio es_ES
dc.contributor.author Llabrés i Xamena, Francesc Xavier es_ES
dc.contributor.author Noei, H. es_ES
dc.contributor.author Kauer, M. es_ES
dc.contributor.author Albada, H.B. es_ES
dc.contributor.author Bloch, E.D. es_ES
dc.contributor.author Marler, B. es_ES
dc.contributor.author Wang, Y.M. es_ES
dc.contributor.author Muhler, M. es_ES
dc.contributor.author Fischer, R.A. es_ES
dc.date.accessioned 2016-05-10T12:55:22Z
dc.date.available 2016-05-10T12:55:22Z
dc.date.issued 2014-07
dc.identifier.issn 1433-7851
dc.identifier.uri http://hdl.handle.net/10251/63867
dc.description.abstract A mixed-linker solid-solution approach was employed to modify the metal sites and introduce structural defects into the mixed-valence Ru-II/III structural analogue of the well-known MOF family [M-3(II,II)(btc)(2)] (M= Cu, Mo, Cr, Ni, Zn; btc= benzene-1,3,5-tricarboxylate), with partly missing carboxylate ligators at the Ru-2 paddle-wheels. Incorporation of pyridine-3,5-dicarboxylate (pydc), which is the same size as btc but carries lower charge, as a second, defective linker has led to the mixed-linker isoreticular derivatives of Ru-MOF, which display characteristics unlike those of the defect-free framework. Along with the creation of additional coordinatively unsaturated sites, the incorporation of pydc induces the partial reduction of ruthenium. Accordingly, the modified Ru sites are responsible for the activity of the "defective" variants in the dissociative chemisorption of CO2, the enhanced performance in CO sorption, the formation of hydride species, and the catalytic hydrogenation of olefins. es_ES
dc.description.sponsorship O.K. acknowledges Ruhr-University Research School (http://www.research-school.rub.de) for admission and additional support of her PhD project. I. L. and F. X. L. X. acknowledge support by Consolider-Ingenio 2010 (project MULTICAT) and the "Severo Ochoa" program. en_EN
dc.language Inglés es_ES
dc.publisher Wiley es_ES
dc.relation.ispartof Angewandte Chemie International Edition es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject CO2 reduction es_ES
dc.subject Heterogeneous Catalysis es_ES
dc.subject Hydrogen splitting es_ES
dc.subject Metal-Organic Frameworks es_ES
dc.subject Structural defects es_ES
dc.title Multifunctional, Defect-Engineered Metal-Organic Frameworks with Ruthenium Centers: Sorption and Catalytic Properties es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1002/anie.201311128
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//CSD2009-00050/ES/Desarrollo de catalizadores más eficientes para el diseño de procesos químicos sostenibles y produccion limpia de energia/ / es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario Mixto de Tecnología Química - Institut Universitari Mixt de Tecnologia Química es_ES
dc.description.bibliographicCitation Kozachuk, O.; Luz Mínguez, I.; Llabrés I Xamena, FX.; Noei, H.; Kauer, M.; Albada, H.; Bloch, E.... (2014). Multifunctional, Defect-Engineered Metal-Organic Frameworks with Ruthenium Centers: Sorption and Catalytic Properties. Angewandte Chemie International Edition. 53(27):7058-7062. https://doi.org/10.1002/anie.201311128 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/10.1002/anie.201311128 es_ES
dc.description.upvformatpinicio 7058 es_ES
dc.description.upvformatpfin 7062 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 53 es_ES
dc.description.issue 27 es_ES
dc.relation.senia 268165 es_ES
dc.contributor.funder Ministerio de Ciencia e Innovación es_ES
dc.description.references Furukawa, H., Cordova, K. E., O’Keeffe, M., & Yaghi, O. M. (2013). The Chemistry and Applications of Metal-Organic Frameworks. Science, 341(6149), 1230444-1230444. doi:10.1126/science.1230444 es_ES
dc.description.references Chem. Soc. Rev. 2009 38 es_ES
dc.description.references Chem. Soc. Rev. 2011 40 es_ES
dc.description.references Chem. Rev. 2012 112 es_ES
dc.description.references Corma, A., García, H., & Llabrés i Xamena, F. X. (2010). Engineering Metal Organic Frameworks for Heterogeneous Catalysis. Chemical Reviews, 110(8), 4606-4655. doi:10.1021/cr9003924 es_ES
dc.description.references Uemura, T., Uchida, N., Higuchi, M., & Kitagawa, S. (2011). Effects of Unsaturated Metal Sites on Radical Vinyl Polymerization in Coordination Nanochannels. Macromolecules, 44(8), 2693-2697. doi:10.1021/ma200310x es_ES
dc.description.references Fu, Y.-Y., Yang, C.-X., & Yan, X.-P. (2012). Control of the Coordination Status of the Open Metal Sites in Metal–Organic Frameworks for High Performance Separation of Polar Compounds. Langmuir, 28(17), 6794-6802. doi:10.1021/la300298e es_ES
dc.description.references Chui, S. S. (1999). A Chemically Functionalizable Nanoporous Material [Cu3(TMA)2(H2O)3]n. Science, 283(5405), 1148-1150. doi:10.1126/science.283.5405.1148 es_ES
dc.description.references Kramer, M., Schwarz, U., & Kaskel, S. (2006). Synthesis and properties of the metal-organic framework Mo3(BTC)2 (TUDMOF-1). Journal of Materials Chemistry, 16(23), 2245. doi:10.1039/b601811d es_ES
dc.description.references Murray, L. J., Dinca, M., Yano, J., Chavan, S., Bordiga, S., Brown, C. M., & Long, J. R. (2010). Highly-Selective and Reversible O2Binding in Cr3(1,3,5-benzenetricarboxylate)2. Journal of the American Chemical Society, 132(23), 7856-7857. doi:10.1021/ja1027925 es_ES
dc.description.references Maniam, P., & Stock, N. (2011). Investigation of Porous Ni-Based Metal–Organic Frameworks Containing Paddle-Wheel Type Inorganic Building Units via High-Throughput Methods. Inorganic Chemistry, 50(11), 5085-5097. doi:10.1021/ic200381f es_ES
dc.description.references Feldblyum, J. I., Liu, M., Gidley, D. W., & Matzger, A. J. (2011). Reconciling the Discrepancies between Crystallographic Porosity and Guest Access As Exemplified by Zn-HKUST-1. Journal of the American Chemical Society, 133(45), 18257-18263. doi:10.1021/ja2055935 es_ES
dc.description.references Huang, L. (2003). Synthesis, morphology control, and properties of porous metal–organic coordination polymers. Microporous and Mesoporous Materials, 58(2), 105-114. doi:10.1016/s1387-1811(02)00609-1 es_ES
dc.description.references Marx, S., Kleist, W., & Baiker, A. (2011). Synthesis, structural properties, and catalytic behavior of Cu-BTC and mixed-linker Cu-BTC-PyDC in the oxidation of benzene derivatives. Journal of Catalysis, 281(1), 76-87. doi:10.1016/j.jcat.2011.04.004 es_ES
dc.description.references Park, T.-H., Hickman, A. J., Koh, K., Martin, S., Wong-Foy, A. G., Sanford, M. S., & Matzger, A. J. (2011). Highly Dispersed Palladium(II) in a Defective Metal–Organic Framework: Application to C–H Activation and Functionalization. Journal of the American Chemical Society, 133(50), 20138-20141. doi:10.1021/ja2094316 es_ES
dc.description.references St. Petkov, P., Vayssilov, G. N., Liu, J., Shekhah, O., Wang, Y., Wöll, C., & Heine, T. (2012). Defects in MOFs: A Thorough Characterization. ChemPhysChem, 13(8), 2025-2029. doi:10.1002/cphc.201200222 es_ES
dc.description.references Chizallet, C., Lazare, S., Bazer-Bachi, D., Bonnier, F., Lecocq, V., Soyer, E., … Bats, N. (2010). Catalysis of Transesterification by a Nonfunctionalized Metal−Organic Framework: Acido-Basicity at the External Surface of ZIF-8 Probed by FTIR andab InitioCalculations. Journal of the American Chemical Society, 132(35), 12365-12377. doi:10.1021/ja103365s es_ES
dc.description.references Llabrés i Xamena, F. X., Cirujano, F. G., & Corma, A. (2012). An unexpected bifunctional acid base catalysis in IRMOF-3 for Knoevenagel condensation reactions. Microporous and Mesoporous Materials, 157, 112-117. doi:10.1016/j.micromeso.2011.12.058 es_ES
dc.description.references Ravon, U., Savonnet, M., Aguado, S., Domine, M. E., Janneau, E., & Farrusseng, D. (2010). Engineering of coordination polymers for shape selective alkylation of large aromatics and the role of defects. Microporous and Mesoporous Materials, 129(3), 319-329. doi:10.1016/j.micromeso.2009.06.008 es_ES
dc.description.references Vermoortele, F., Bueken, B., Le Bars, G., Van de Voorde, B., Vandichel, M., Houthoofd, K., … De Vos, D. E. (2013). Synthesis Modulation as a Tool To Increase the Catalytic Activity of Metal–Organic Frameworks: The Unique Case of UiO-66(Zr). Journal of the American Chemical Society, 135(31), 11465-11468. doi:10.1021/ja405078u es_ES
dc.description.references Kozachuk, O., Yusenko, K., Noei, H., Wang, Y., Walleck, S., Glaser, T., & Fischer, R. A. (2011). Solvothermal growth of a ruthenium metal–organic framework featuring HKUST-1 structure type as thin films on oxide surfaces. Chemical Communications, 47(30), 8509. doi:10.1039/c1cc11107h es_ES
dc.description.references Noei, H., Kozachuk, O., Amirjalayer, S., Bureekaew, S., Kauer, M., Schmid, R., … Wang, Y. (2013). CO Adsorption on a Mixed-Valence Ruthenium Metal–Organic Framework Studied by UHV-FTIR Spectroscopy and DFT Calculations. The Journal of Physical Chemistry C, 117(11), 5658-5666. doi:10.1021/jp3056366 es_ES
dc.description.references Burrows, A. D. (2011). Mixed-component metal–organic frameworks (MC-MOFs): enhancing functionality through solid solution formation and surface modifications. CrystEngComm, 13(11), 3623. doi:10.1039/c0ce00568a es_ES
dc.description.references Wang, Y., Glenz, A., Muhler, M., & Wöll, C. (2009). A new dual-purpose ultrahigh vacuum infrared spectroscopy apparatus optimized for grazing-incidence reflection as well as for transmission geometries. Review of Scientific Instruments, 80(11), 113108. doi:10.1063/1.3257677 es_ES
dc.description.references Raskó, J. (1998). Catalysis Letters, 56(1), 11-15. doi:10.1023/a:1019072021006 es_ES
dc.description.references Usubharatana, P., McMartin, D., Veawab, A., & Tontiwachwuthikul, P. (2006). Photocatalytic Process for CO2Emission Reduction from Industrial Flue Gas Streams. Industrial & Engineering Chemistry Research, 45(8), 2558-2568. doi:10.1021/ie0505763 es_ES
dc.description.references Indrakanti, V. P., Kubicki, J. D., & Schobert, H. H. (2009). Photoinduced activation of CO2 on Ti-based heterogeneous catalysts: Current state, chemical physics-based insights and outlook. Energy & Environmental Science, 2(7), 745. doi:10.1039/b822176f es_ES
dc.description.references Mori, K., Yamashita, H., & Anpo, M. (2012). Photocatalytic reduction of CO2 with H2O on various titanium oxide photocatalysts. RSC Advances, 2(8), 3165. doi:10.1039/c2ra01332k es_ES
dc.description.references Kumar, B., Llorente, M., Froehlich, J., Dang, T., Sathrum, A., & Kubiak, C. P. (2012). Photochemical and Photoelectrochemical Reduction of CO2. Annual Review of Physical Chemistry, 63(1), 541-569. doi:10.1146/annurev-physchem-032511-143759 es_ES
dc.description.references Benson, E. E., Kubiak, C. P., Sathrum, A. J., & Smieja, J. M. (2009). Electrocatalytic and homogeneous approaches to conversion of CO2to liquid fuels. Chem. Soc. Rev., 38(1), 89-99. doi:10.1039/b804323j es_ES
dc.description.references Wang, C., Xie, Z., deKrafft, K. E., & Lin, W. (2011). Doping Metal–Organic Frameworks for Water Oxidation, Carbon Dioxide Reduction, and Organic Photocatalysis. Journal of the American Chemical Society, 133(34), 13445-13454. doi:10.1021/ja203564w es_ES
dc.description.references Fu, Y., Sun, D., Chen, Y., Huang, R., Ding, Z., Fu, X., & Li, Z. (2012). An Amine-Functionalized Titanium Metal-Organic Framework Photocatalyst with Visible-Light-Induced Activity for CO2 Reduction. Angewandte Chemie, 124(14), 3420-3423. doi:10.1002/ange.201108357 es_ES
dc.description.references Fu, Y., Sun, D., Chen, Y., Huang, R., Ding, Z., Fu, X., & Li, Z. (2012). An Amine-Functionalized Titanium Metal-Organic Framework Photocatalyst with Visible-Light-Induced Activity for CO2 Reduction. Angewandte Chemie International Edition, 51(14), 3364-3367. doi:10.1002/anie.201108357 es_ES
dc.description.references Tsukahara, Y., Wada, T., & Tanaka, K. (2010). Redox Behavior of Ruthenium(Bipyridine)(Terpyridine)(Carbonyl) Complex-modified Carbon Electrode and Reactivity toward Electrochemical Reduction of CO2. Chemistry Letters, 39(11), 1134-1135. doi:10.1246/cl.2010.1134 es_ES
dc.description.references Chen, Z., Chen, C., Weinberg, D. R., Kang, P., Concepcion, J. J., Harrison, D. P., … Meyer, T. J. (2011). Electrocatalytic reduction of CO2 to CO by polypyridyl ruthenium complexes. Chemical Communications, 47(47), 12607. doi:10.1039/c1cc15071e es_ES
dc.description.references Planas, N., Ono, T., Vaquer, L., Miró, P., Benet-Buchholz, J., Gagliardi, L., … Llobet, A. (2011). Carbon dioxide reduction by mononuclear ruthenium polypyridyl complexes. Physical Chemistry Chemical Physics, 13(43), 19480. doi:10.1039/c1cp22814e es_ES
dc.description.references Jain, S. L., & Sain, B. (2002). Ruthenium catalyzed oxidation of tertiary nitrogen compounds with molecular oxygen: an easy access to N-oxides under mild conditions. Chemical Communications, (10), 1040-1041. doi:10.1039/b202744p es_ES
dc.description.references Kaesz, H. D., & Saillant, R. B. (1972). Hydride complexes of the transition metals. Chemical Reviews, 72(3), 231-281. doi:10.1021/cr60277a003 es_ES
dc.description.references Sellmann, D., Prakash, R., Heinemann, F. W., Moll, M., & Klimowicz, M. (2004). Heterolytic Cleavage of H2 at a Sulfur-Bridged Dinuclear Ruthenium Center. Angewandte Chemie, 116(14), 1913-1916. doi:10.1002/ange.200453717 es_ES
dc.description.references Sellmann, D., Prakash, R., Heinemann, F. W., Moll, M., & Klimowicz, M. (2004). Heterolytic Cleavage of H2 at a Sulfur-Bridged Dinuclear Ruthenium Center. Angewandte Chemie International Edition, 43(14), 1877-1880. doi:10.1002/anie.200453717 es_ES
dc.description.references Wang, X., & Andrews, L. (2009). Infrared Spectra and Theoretical Calculations for Fe, Ru, and Os Metal Hydrides and Dihydrogen Complexes. The Journal of Physical Chemistry A, 113(3), 551-563. doi:10.1021/jp806845h es_ES
dc.description.references LAU, C., NG, S., JIA, G., & LIN, Z. (2007). Some ruthenium hydride, dihydrogen, and dihydrogen-bonded complexes in catalytic reactions. Coordination Chemistry Reviews, 251(17-20), 2223-2237. doi:10.1016/j.ccr.2006.12.001 es_ES
dc.description.references Yamaguchi, K., & Mizuno, N. (2003). Angewandte Chemie, 115(13), 1518-1521. doi:10.1002/ange.200250779 es_ES
dc.description.references Yamaguchi, K., & Mizuno, N. (2003). Efficient Heterogeneous Aerobic Oxidation of Amines by a Supported Ruthenium Catalyst. Angewandte Chemie International Edition, 42(13), 1480-1483. doi:10.1002/anie.200250779 es_ES
dc.description.references Su, F., Lee, F. Y., Lv, L., Liu, J., Tian, X. N., & Zhao, X. S. (2007). Sandwiched Ruthenium/Carbon Nanostructures for Highly Active Heterogeneous Hydrogenation. Advanced Functional Materials, 17(12), 1926-1931. doi:10.1002/adfm.200700067 es_ES
dc.description.references Over, H. (2012). Surface Chemistry of Ruthenium Dioxide in Heterogeneous Catalysis and Electrocatalysis: From Fundamental to Applied Research. Chemical Reviews, 112(6), 3356-3426. doi:10.1021/cr200247n es_ES
dc.description.references Miura, H., Wada, K., Hosokawa, S., Sai, M., Kondo, T., & Inoue, M. (2009). A heterogeneous Ru/CeO2 catalyst effective for transfer-allylation from homoallyl alcohols to aldehydes. Chemical Communications, (27), 4112. doi:10.1039/b901830a es_ES
dc.description.references Tannenbaum, R. (1994). Three-Dimensional Coordination Polymers of Ruthenium(2+) with 1,4-Diisocyanobenzene Ligands and Their Catalytic Activity. Chemistry of Materials, 6(4), 550-555. doi:10.1021/cm00040a034 es_ES
dc.description.references Tannenbaum, R. (1996). Radiation enhancement of the catalytic properties of three-dimensional coordination polymers of Ru(II) with diisocyanide ligands. Journal of Molecular Catalysis A: Chemical, 107(1-3), 207-215. doi:10.1016/1381-1169(95)00221-9 es_ES
dc.description.references Sato, T., Mori, W., Nozaki Kato, C., Ohmura, T., Sato, T., Yokoyama, K., … Naito, S. (2003). Microporous Rhodium(II) 4,4′,4″,4″′-(21H,23H-porphine-5,10,15,20-tetrayl)tetrakisbenzoate. Synthesis, Nitrogen Adsorption Properties, and Catalytic Performance for Hydrogenation of Olefin. Chemistry Letters, 32(9), 854-855. doi:10.1246/cl.2003.854 es_ES
dc.description.references SATO, T., MORI, W., KATO, C., YANAOKA, E., KURIBAYASHI, T., OHTERA, R., & SHIRAISHI, Y. (2005). Novel microporous rhodium(II) carboxylate polymer complexes containing metalloporphyrin: syntheses and catalytic performances in hydrogenation of olefins. Journal of Catalysis, 232(1), 186-198. doi:10.1016/j.jcat.2005.02.007 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem