Mostrar el registro sencillo del ítem
dc.contributor.author | Kozachuk, O. | es_ES |
dc.contributor.author | Luz Mínguez, Ignacio | es_ES |
dc.contributor.author | Llabrés i Xamena, Francesc Xavier | es_ES |
dc.contributor.author | Noei, H. | es_ES |
dc.contributor.author | Kauer, M. | es_ES |
dc.contributor.author | Albada, H.B. | es_ES |
dc.contributor.author | Bloch, E.D. | es_ES |
dc.contributor.author | Marler, B. | es_ES |
dc.contributor.author | Wang, Y.M. | es_ES |
dc.contributor.author | Muhler, M. | es_ES |
dc.contributor.author | Fischer, R.A. | es_ES |
dc.date.accessioned | 2016-05-10T12:55:22Z | |
dc.date.available | 2016-05-10T12:55:22Z | |
dc.date.issued | 2014-07 | |
dc.identifier.issn | 1433-7851 | |
dc.identifier.uri | http://hdl.handle.net/10251/63867 | |
dc.description.abstract | A mixed-linker solid-solution approach was employed to modify the metal sites and introduce structural defects into the mixed-valence Ru-II/III structural analogue of the well-known MOF family [M-3(II,II)(btc)(2)] (M= Cu, Mo, Cr, Ni, Zn; btc= benzene-1,3,5-tricarboxylate), with partly missing carboxylate ligators at the Ru-2 paddle-wheels. Incorporation of pyridine-3,5-dicarboxylate (pydc), which is the same size as btc but carries lower charge, as a second, defective linker has led to the mixed-linker isoreticular derivatives of Ru-MOF, which display characteristics unlike those of the defect-free framework. Along with the creation of additional coordinatively unsaturated sites, the incorporation of pydc induces the partial reduction of ruthenium. Accordingly, the modified Ru sites are responsible for the activity of the "defective" variants in the dissociative chemisorption of CO2, the enhanced performance in CO sorption, the formation of hydride species, and the catalytic hydrogenation of olefins. | es_ES |
dc.description.sponsorship | O.K. acknowledges Ruhr-University Research School (http://www.research-school.rub.de) for admission and additional support of her PhD project. I. L. and F. X. L. X. acknowledge support by Consolider-Ingenio 2010 (project MULTICAT) and the "Severo Ochoa" program. | en_EN |
dc.language | Inglés | es_ES |
dc.publisher | Wiley | es_ES |
dc.relation.ispartof | Angewandte Chemie International Edition | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | CO2 reduction | es_ES |
dc.subject | Heterogeneous Catalysis | es_ES |
dc.subject | Hydrogen splitting | es_ES |
dc.subject | Metal-Organic Frameworks | es_ES |
dc.subject | Structural defects | es_ES |
dc.title | Multifunctional, Defect-Engineered Metal-Organic Frameworks with Ruthenium Centers: Sorption and Catalytic Properties | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1002/anie.201311128 | |
dc.relation.projectID | info:eu-repo/grantAgreement/MICINN//CSD2009-00050/ES/Desarrollo de catalizadores más eficientes para el diseño de procesos químicos sostenibles y produccion limpia de energia/ / | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Instituto Universitario Mixto de Tecnología Química - Institut Universitari Mixt de Tecnologia Química | es_ES |
dc.description.bibliographicCitation | Kozachuk, O.; Luz Mínguez, I.; Llabrés I Xamena, FX.; Noei, H.; Kauer, M.; Albada, H.; Bloch, E.... (2014). Multifunctional, Defect-Engineered Metal-Organic Frameworks with Ruthenium Centers: Sorption and Catalytic Properties. Angewandte Chemie International Edition. 53(27):7058-7062. https://doi.org/10.1002/anie.201311128 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | http://dx.doi.org/10.1002/anie.201311128 | es_ES |
dc.description.upvformatpinicio | 7058 | es_ES |
dc.description.upvformatpfin | 7062 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 53 | es_ES |
dc.description.issue | 27 | es_ES |
dc.relation.senia | 268165 | es_ES |
dc.contributor.funder | Ministerio de Ciencia e Innovación | es_ES |
dc.description.references | Furukawa, H., Cordova, K. E., O’Keeffe, M., & Yaghi, O. M. (2013). The Chemistry and Applications of Metal-Organic Frameworks. Science, 341(6149), 1230444-1230444. doi:10.1126/science.1230444 | es_ES |
dc.description.references | Chem. Soc. Rev. 2009 38 | es_ES |
dc.description.references | Chem. Soc. Rev. 2011 40 | es_ES |
dc.description.references | Chem. Rev. 2012 112 | es_ES |
dc.description.references | Corma, A., García, H., & Llabrés i Xamena, F. X. (2010). Engineering Metal Organic Frameworks for Heterogeneous Catalysis. Chemical Reviews, 110(8), 4606-4655. doi:10.1021/cr9003924 | es_ES |
dc.description.references | Uemura, T., Uchida, N., Higuchi, M., & Kitagawa, S. (2011). Effects of Unsaturated Metal Sites on Radical Vinyl Polymerization in Coordination Nanochannels. Macromolecules, 44(8), 2693-2697. doi:10.1021/ma200310x | es_ES |
dc.description.references | Fu, Y.-Y., Yang, C.-X., & Yan, X.-P. (2012). Control of the Coordination Status of the Open Metal Sites in Metal–Organic Frameworks for High Performance Separation of Polar Compounds. Langmuir, 28(17), 6794-6802. doi:10.1021/la300298e | es_ES |
dc.description.references | Chui, S. S. (1999). A Chemically Functionalizable Nanoporous Material [Cu3(TMA)2(H2O)3]n. Science, 283(5405), 1148-1150. doi:10.1126/science.283.5405.1148 | es_ES |
dc.description.references | Kramer, M., Schwarz, U., & Kaskel, S. (2006). Synthesis and properties of the metal-organic framework Mo3(BTC)2 (TUDMOF-1). Journal of Materials Chemistry, 16(23), 2245. doi:10.1039/b601811d | es_ES |
dc.description.references | Murray, L. J., Dinca, M., Yano, J., Chavan, S., Bordiga, S., Brown, C. M., & Long, J. R. (2010). Highly-Selective and Reversible O2Binding in Cr3(1,3,5-benzenetricarboxylate)2. Journal of the American Chemical Society, 132(23), 7856-7857. doi:10.1021/ja1027925 | es_ES |
dc.description.references | Maniam, P., & Stock, N. (2011). Investigation of Porous Ni-Based Metal–Organic Frameworks Containing Paddle-Wheel Type Inorganic Building Units via High-Throughput Methods. Inorganic Chemistry, 50(11), 5085-5097. doi:10.1021/ic200381f | es_ES |
dc.description.references | Feldblyum, J. I., Liu, M., Gidley, D. W., & Matzger, A. J. (2011). Reconciling the Discrepancies between Crystallographic Porosity and Guest Access As Exemplified by Zn-HKUST-1. Journal of the American Chemical Society, 133(45), 18257-18263. doi:10.1021/ja2055935 | es_ES |
dc.description.references | Huang, L. (2003). Synthesis, morphology control, and properties of porous metal–organic coordination polymers. Microporous and Mesoporous Materials, 58(2), 105-114. doi:10.1016/s1387-1811(02)00609-1 | es_ES |
dc.description.references | Marx, S., Kleist, W., & Baiker, A. (2011). Synthesis, structural properties, and catalytic behavior of Cu-BTC and mixed-linker Cu-BTC-PyDC in the oxidation of benzene derivatives. Journal of Catalysis, 281(1), 76-87. doi:10.1016/j.jcat.2011.04.004 | es_ES |
dc.description.references | Park, T.-H., Hickman, A. J., Koh, K., Martin, S., Wong-Foy, A. G., Sanford, M. S., & Matzger, A. J. (2011). Highly Dispersed Palladium(II) in a Defective Metal–Organic Framework: Application to C–H Activation and Functionalization. Journal of the American Chemical Society, 133(50), 20138-20141. doi:10.1021/ja2094316 | es_ES |
dc.description.references | St. Petkov, P., Vayssilov, G. N., Liu, J., Shekhah, O., Wang, Y., Wöll, C., & Heine, T. (2012). Defects in MOFs: A Thorough Characterization. ChemPhysChem, 13(8), 2025-2029. doi:10.1002/cphc.201200222 | es_ES |
dc.description.references | Chizallet, C., Lazare, S., Bazer-Bachi, D., Bonnier, F., Lecocq, V., Soyer, E., … Bats, N. (2010). Catalysis of Transesterification by a Nonfunctionalized Metal−Organic Framework: Acido-Basicity at the External Surface of ZIF-8 Probed by FTIR andab InitioCalculations. Journal of the American Chemical Society, 132(35), 12365-12377. doi:10.1021/ja103365s | es_ES |
dc.description.references | Llabrés i Xamena, F. X., Cirujano, F. G., & Corma, A. (2012). An unexpected bifunctional acid base catalysis in IRMOF-3 for Knoevenagel condensation reactions. Microporous and Mesoporous Materials, 157, 112-117. doi:10.1016/j.micromeso.2011.12.058 | es_ES |
dc.description.references | Ravon, U., Savonnet, M., Aguado, S., Domine, M. E., Janneau, E., & Farrusseng, D. (2010). Engineering of coordination polymers for shape selective alkylation of large aromatics and the role of defects. Microporous and Mesoporous Materials, 129(3), 319-329. doi:10.1016/j.micromeso.2009.06.008 | es_ES |
dc.description.references | Vermoortele, F., Bueken, B., Le Bars, G., Van de Voorde, B., Vandichel, M., Houthoofd, K., … De Vos, D. E. (2013). Synthesis Modulation as a Tool To Increase the Catalytic Activity of Metal–Organic Frameworks: The Unique Case of UiO-66(Zr). Journal of the American Chemical Society, 135(31), 11465-11468. doi:10.1021/ja405078u | es_ES |
dc.description.references | Kozachuk, O., Yusenko, K., Noei, H., Wang, Y., Walleck, S., Glaser, T., & Fischer, R. A. (2011). Solvothermal growth of a ruthenium metal–organic framework featuring HKUST-1 structure type as thin films on oxide surfaces. Chemical Communications, 47(30), 8509. doi:10.1039/c1cc11107h | es_ES |
dc.description.references | Noei, H., Kozachuk, O., Amirjalayer, S., Bureekaew, S., Kauer, M., Schmid, R., … Wang, Y. (2013). CO Adsorption on a Mixed-Valence Ruthenium Metal–Organic Framework Studied by UHV-FTIR Spectroscopy and DFT Calculations. The Journal of Physical Chemistry C, 117(11), 5658-5666. doi:10.1021/jp3056366 | es_ES |
dc.description.references | Burrows, A. D. (2011). Mixed-component metal–organic frameworks (MC-MOFs): enhancing functionality through solid solution formation and surface modifications. CrystEngComm, 13(11), 3623. doi:10.1039/c0ce00568a | es_ES |
dc.description.references | Wang, Y., Glenz, A., Muhler, M., & Wöll, C. (2009). A new dual-purpose ultrahigh vacuum infrared spectroscopy apparatus optimized for grazing-incidence reflection as well as for transmission geometries. Review of Scientific Instruments, 80(11), 113108. doi:10.1063/1.3257677 | es_ES |
dc.description.references | Raskó, J. (1998). Catalysis Letters, 56(1), 11-15. doi:10.1023/a:1019072021006 | es_ES |
dc.description.references | Usubharatana, P., McMartin, D., Veawab, A., & Tontiwachwuthikul, P. (2006). Photocatalytic Process for CO2Emission Reduction from Industrial Flue Gas Streams. Industrial & Engineering Chemistry Research, 45(8), 2558-2568. doi:10.1021/ie0505763 | es_ES |
dc.description.references | Indrakanti, V. P., Kubicki, J. D., & Schobert, H. H. (2009). Photoinduced activation of CO2 on Ti-based heterogeneous catalysts: Current state, chemical physics-based insights and outlook. Energy & Environmental Science, 2(7), 745. doi:10.1039/b822176f | es_ES |
dc.description.references | Mori, K., Yamashita, H., & Anpo, M. (2012). Photocatalytic reduction of CO2 with H2O on various titanium oxide photocatalysts. RSC Advances, 2(8), 3165. doi:10.1039/c2ra01332k | es_ES |
dc.description.references | Kumar, B., Llorente, M., Froehlich, J., Dang, T., Sathrum, A., & Kubiak, C. P. (2012). Photochemical and Photoelectrochemical Reduction of CO2. Annual Review of Physical Chemistry, 63(1), 541-569. doi:10.1146/annurev-physchem-032511-143759 | es_ES |
dc.description.references | Benson, E. E., Kubiak, C. P., Sathrum, A. J., & Smieja, J. M. (2009). Electrocatalytic and homogeneous approaches to conversion of CO2to liquid fuels. Chem. Soc. Rev., 38(1), 89-99. doi:10.1039/b804323j | es_ES |
dc.description.references | Wang, C., Xie, Z., deKrafft, K. E., & Lin, W. (2011). Doping Metal–Organic Frameworks for Water Oxidation, Carbon Dioxide Reduction, and Organic Photocatalysis. Journal of the American Chemical Society, 133(34), 13445-13454. doi:10.1021/ja203564w | es_ES |
dc.description.references | Fu, Y., Sun, D., Chen, Y., Huang, R., Ding, Z., Fu, X., & Li, Z. (2012). An Amine-Functionalized Titanium Metal-Organic Framework Photocatalyst with Visible-Light-Induced Activity for CO2 Reduction. Angewandte Chemie, 124(14), 3420-3423. doi:10.1002/ange.201108357 | es_ES |
dc.description.references | Fu, Y., Sun, D., Chen, Y., Huang, R., Ding, Z., Fu, X., & Li, Z. (2012). An Amine-Functionalized Titanium Metal-Organic Framework Photocatalyst with Visible-Light-Induced Activity for CO2 Reduction. Angewandte Chemie International Edition, 51(14), 3364-3367. doi:10.1002/anie.201108357 | es_ES |
dc.description.references | Tsukahara, Y., Wada, T., & Tanaka, K. (2010). Redox Behavior of Ruthenium(Bipyridine)(Terpyridine)(Carbonyl) Complex-modified Carbon Electrode and Reactivity toward Electrochemical Reduction of CO2. Chemistry Letters, 39(11), 1134-1135. doi:10.1246/cl.2010.1134 | es_ES |
dc.description.references | Chen, Z., Chen, C., Weinberg, D. R., Kang, P., Concepcion, J. J., Harrison, D. P., … Meyer, T. J. (2011). Electrocatalytic reduction of CO2 to CO by polypyridyl ruthenium complexes. Chemical Communications, 47(47), 12607. doi:10.1039/c1cc15071e | es_ES |
dc.description.references | Planas, N., Ono, T., Vaquer, L., Miró, P., Benet-Buchholz, J., Gagliardi, L., … Llobet, A. (2011). Carbon dioxide reduction by mononuclear ruthenium polypyridyl complexes. Physical Chemistry Chemical Physics, 13(43), 19480. doi:10.1039/c1cp22814e | es_ES |
dc.description.references | Jain, S. L., & Sain, B. (2002). Ruthenium catalyzed oxidation of tertiary nitrogen compounds with molecular oxygen: an easy access to N-oxides under mild conditions. Chemical Communications, (10), 1040-1041. doi:10.1039/b202744p | es_ES |
dc.description.references | Kaesz, H. D., & Saillant, R. B. (1972). Hydride complexes of the transition metals. Chemical Reviews, 72(3), 231-281. doi:10.1021/cr60277a003 | es_ES |
dc.description.references | Sellmann, D., Prakash, R., Heinemann, F. W., Moll, M., & Klimowicz, M. (2004). Heterolytic Cleavage of H2 at a Sulfur-Bridged Dinuclear Ruthenium Center. Angewandte Chemie, 116(14), 1913-1916. doi:10.1002/ange.200453717 | es_ES |
dc.description.references | Sellmann, D., Prakash, R., Heinemann, F. W., Moll, M., & Klimowicz, M. (2004). Heterolytic Cleavage of H2 at a Sulfur-Bridged Dinuclear Ruthenium Center. Angewandte Chemie International Edition, 43(14), 1877-1880. doi:10.1002/anie.200453717 | es_ES |
dc.description.references | Wang, X., & Andrews, L. (2009). Infrared Spectra and Theoretical Calculations for Fe, Ru, and Os Metal Hydrides and Dihydrogen Complexes. The Journal of Physical Chemistry A, 113(3), 551-563. doi:10.1021/jp806845h | es_ES |
dc.description.references | LAU, C., NG, S., JIA, G., & LIN, Z. (2007). Some ruthenium hydride, dihydrogen, and dihydrogen-bonded complexes in catalytic reactions. Coordination Chemistry Reviews, 251(17-20), 2223-2237. doi:10.1016/j.ccr.2006.12.001 | es_ES |
dc.description.references | Yamaguchi, K., & Mizuno, N. (2003). Angewandte Chemie, 115(13), 1518-1521. doi:10.1002/ange.200250779 | es_ES |
dc.description.references | Yamaguchi, K., & Mizuno, N. (2003). Efficient Heterogeneous Aerobic Oxidation of Amines by a Supported Ruthenium Catalyst. Angewandte Chemie International Edition, 42(13), 1480-1483. doi:10.1002/anie.200250779 | es_ES |
dc.description.references | Su, F., Lee, F. Y., Lv, L., Liu, J., Tian, X. N., & Zhao, X. S. (2007). Sandwiched Ruthenium/Carbon Nanostructures for Highly Active Heterogeneous Hydrogenation. Advanced Functional Materials, 17(12), 1926-1931. doi:10.1002/adfm.200700067 | es_ES |
dc.description.references | Over, H. (2012). Surface Chemistry of Ruthenium Dioxide in Heterogeneous Catalysis and Electrocatalysis: From Fundamental to Applied Research. Chemical Reviews, 112(6), 3356-3426. doi:10.1021/cr200247n | es_ES |
dc.description.references | Miura, H., Wada, K., Hosokawa, S., Sai, M., Kondo, T., & Inoue, M. (2009). A heterogeneous Ru/CeO2 catalyst effective for transfer-allylation from homoallyl alcohols to aldehydes. Chemical Communications, (27), 4112. doi:10.1039/b901830a | es_ES |
dc.description.references | Tannenbaum, R. (1994). Three-Dimensional Coordination Polymers of Ruthenium(2+) with 1,4-Diisocyanobenzene Ligands and Their Catalytic Activity. Chemistry of Materials, 6(4), 550-555. doi:10.1021/cm00040a034 | es_ES |
dc.description.references | Tannenbaum, R. (1996). Radiation enhancement of the catalytic properties of three-dimensional coordination polymers of Ru(II) with diisocyanide ligands. Journal of Molecular Catalysis A: Chemical, 107(1-3), 207-215. doi:10.1016/1381-1169(95)00221-9 | es_ES |
dc.description.references | Sato, T., Mori, W., Nozaki Kato, C., Ohmura, T., Sato, T., Yokoyama, K., … Naito, S. (2003). Microporous Rhodium(II) 4,4′,4″,4″′-(21H,23H-porphine-5,10,15,20-tetrayl)tetrakisbenzoate. Synthesis, Nitrogen Adsorption Properties, and Catalytic Performance for Hydrogenation of Olefin. Chemistry Letters, 32(9), 854-855. doi:10.1246/cl.2003.854 | es_ES |
dc.description.references | SATO, T., MORI, W., KATO, C., YANAOKA, E., KURIBAYASHI, T., OHTERA, R., & SHIRAISHI, Y. (2005). Novel microporous rhodium(II) carboxylate polymer complexes containing metalloporphyrin: syntheses and catalytic performances in hydrogenation of olefins. Journal of Catalysis, 232(1), 186-198. doi:10.1016/j.jcat.2005.02.007 | es_ES |