- -

Risk Scoring Models for Trade Credit in Small and Medium Enterprises

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Risk Scoring Models for Trade Credit in Small and Medium Enterprises

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Terrádez Gurrea, Manuel es_ES
dc.contributor.author Kizys, Renatas es_ES
dc.contributor.author Juan, Angel A. es_ES
dc.contributor.author Debón Aucejo, Ana María es_ES
dc.contributor.author Sawik, Bartosz es_ES
dc.contributor.editor Kitsos, Christos P. es_ES
dc.date.accessioned 2016-05-10T15:21:08Z
dc.date.available 2016-05-10T15:21:08Z
dc.date.issued 2015-05
dc.identifier.issn 2194-1009
dc.identifier.uri http://hdl.handle.net/10251/63870
dc.description © Springer International Publishing Switzerland 2015 C.P. Kitsos et al. (eds.), Theory and Practice of Risk Assessment, Springer Proceedings in Mathematics & Statistics 136, DOI 10.1007/978-3-319-18029-8_26 es_ES
dc.description.abstract Trade credit refers to providing goods and services on a deferred payment basis. Commercial credit management is a matter of great importance for most small and medium enterprises (SMEs), since it represents a significant portion of their assets. Commercial lending involves assuming some credit risk due to exposure to default. Thus, the management of trade credit and payment delays is strongly related to the liquidation and bankruptcy of enterprises. In this paper we study the relationship between trade credit management and the level of risk in SMEs. Despite its relevance for most SMEs, this problem has not been sufficiently analyzed in the existing literature. After a brief review of existing literature, we use a large database of enterprises to analyze data and propose a multivariate decision-tree model which aims at explaining the level of risk as a function of several variables, both of financial and non-financial nature. Decision trees replace the equation in parametric regression models with a set of rules. This feature is an important aid for the decision process of risk experts, as it allows them to reduce time and then the economic cost of their decisions. es_ES
dc.description.sponsorship This work has been partially supported by the NCN grant (6459/B/T02/2011/40) and AGH grant (11.11.200.274)
dc.language Inglés es_ES
dc.publisher Springer International Publishing es_ES
dc.relation.ispartof Theory and Practice of Risk Assessment es_ES
dc.relation.ispartofseries Springer Proceedings in Mathematics & Statistics;136
dc.rights Reserva de todos los derechos es_ES
dc.subject Trade credit es_ES
dc.subject Scoring models es_ES
dc.subject Small and medium enterprises es_ES
dc.subject Multivariate regression es_ES
dc.subject Decision trees es_ES
dc.subject.classification ESTADISTICA E INVESTIGACION OPERATIVA es_ES
dc.title Risk Scoring Models for Trade Credit in Small and Medium Enterprises es_ES
dc.type Capítulo de libro es_ES
dc.identifier.doi 10.1007/978-3-319-18029-8_26
dc.relation.projectID info:eu-repo/grantAgreement/NCN//6459%2FB%2FT02%2F2011%2F40/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AGH//11.11.200.274/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Estadística e Investigación Operativa Aplicadas y Calidad - Departament d'Estadística i Investigació Operativa Aplicades i Qualitat es_ES
dc.description.bibliographicCitation Terrádez Gurrea, M.; Kizys, R.; Juan, AA.; Debón Aucejo, AM.; Sawik, B. (2015). Risk Scoring Models for Trade Credit in Small and Medium Enterprises. En Theory and Practice of Risk Assessment. Springer International Publishing. 349-360. https://doi.org/10.1007/978-3-319-18029-8_26 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/10.1007/978-3-319-18029-8_26 es_ES
dc.description.upvformatpinicio 349 es_ES
dc.description.upvformatpfin 360 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.relation.senia 279196 es_ES
dc.contributor.funder National Science Centre, Polonia
dc.contributor.funder AGH University of Science and Technology, Polonia
dc.description.references Altman, E.I.: Financial ratios, discriminant analysis and prediction of corporate bank ruptcy. J. Financ. 23, 589–609 (1968) es_ES
dc.description.references Altman, E.I., Sabato, G.: Modeling credit risk for SMEs: evidence from the US market. ABACUS 43, 332–357 (2007) es_ES
dc.description.references Altman, E.I., Sabato, G., Wilson, N.: The value of non-financial information in SME risk management. J. Credit Risk 6, 1–33 (2010) es_ES
dc.description.references Aziz, A., Emanuel, D.C., Lawson, G.H.: Bankruptcy prediction: an investigation of cash flow based models. J. Manag. Stud. 25, 419–437 (1988) es_ES
dc.description.references Becchetti, L., Sierra, J.: Bankruptcy risk and productive efficiency in manufacturing firms. J. Bank. Financ. 27, 2099–2120 (2002) es_ES
dc.description.references Berry, M.J.A., Linoff, G.: Data Mining Techniques. Wiley, New York (1997) es_ES
dc.description.references Boissay, F., Gropp, R.: Payment defaults and interfirm liquidity provision. Rev. Financ. 1–42, (2013), doi: 10.1093/rof/rfs045 es_ES
dc.description.references Cheng, N., Pike, R.: The trade credit decision: evidence of UK firms. Manag. Decis. Econ. 24, 419–438 (2003) es_ES
dc.description.references Correa, A., Acosta, M., Gonzalez, A.L.: La insolvencia empresarial: un anlisis emprico para la pyme. Revista de Contabilidad 6, 47–79 (2003) es_ES
dc.description.references Cunat, V.: Trade credit: suppliers as debt collectors and insurance providers. Rev. Financ. Stud. 20, 491–527 (2007) es_ES
dc.description.references Deakin, E.B.: A discriminant analysis of predictors of business failure. J. Account. Res. 10, 167–179 (1972) es_ES
dc.description.references Fantazzini, D., Figini, S.: Random survival forest models for SME credit risk measurement. Methodol. Comput. Appl. Probab. 11, 29–45 (2009) es_ES
dc.description.references Fawcett, T.: An introduction to ROC analysis. Pattern Recognit. Lett. 27, 861–874 (2006) es_ES
dc.description.references Grunert, J., Norden, L., Weber, M.: The role of non-financial factors in internal credit ratings. J. Bank. Financ. 29, 509–531 (2004) es_ES
dc.description.references Hastie, T, Tibshirani, R., Friedman, J.: The Elements of Statistical Learning: Data Mining, Inference and Prediction. Springer, Berlin (2001) es_ES
dc.description.references Hernandez, J., Ramirez, M.J., Ferri, C.: Introducción a la minería de datos. Pearson Prentice Hall (2004) es_ES
dc.description.references Lizarraga, F.: Modelos de prevision del fracaso empresarial: funciona entre nuestras empresas el modelo de Altman de 1968? Revista de Contabilidad 1, 137–164 (1998) es_ES
dc.description.references Metz, C.E., Kronman, H.B.: Statistical significance tests for binormal ROC curves. J. Math. Psychol. 22, 218–243 (1980) es_ES
dc.description.references Micha, B.: Analysis of business failures in France. J. Bank. Financ. 8, 281–291 (1984) es_ES
dc.description.references Ohlson, J.: Financial ratios and the probabilistic prediction of bankruptcy. J. Account. Res. 18, 109–131 (1980) es_ES
dc.description.references Poutziouris, P., Michaelas, N., Soufani, K.: Financial management of Trade Credits in SMEs. Working paper. Concordia University. http://www.efmaefm.org/efma2005/papers/241-soufani_paper.pdf es_ES
dc.description.references Pozuelo, J., Labatut, G., Veres, E.: Análisis descriptivo de los procesos de fracaso empresarial en microempresas mediante técnicas multivariantes. Revista Europea de Direccin y Economa de la Empresa, 19, 47–66 (2010) es_ES
dc.description.references Rockafellar, R.T., Uryasev, S.: Optimization of conditional value-at-risk. J. Risk 2(3), 21–41 (2000) es_ES
dc.description.references Rockafellar, R.T., Uryasev, S.: Conditional value-at-risk for general loss distributions. J. Bank. Financ. 26, 1443–1471 (2002) es_ES
dc.description.references Sarykalin S., Serraino G., Uryasev S.: Value-at-risk vs. conditional value-at-risk in risk management and optimization. In: Chen, Z-L., Raghavan, S., Gray, P., (Eds.) Tutorials in Operations Research, INFORMS Annual Meeting, Washington DC, USA, October 12–15 (2008) es_ES
dc.description.references Sawik, B.: Downside risk approach for multi-objective portfolio optimization. In: Klatte, D., Lthi, H.-J., Schmedders, K. (eds.) Operations Research Proceedings 2011, Operations Research Proceedings, pp. 191–196. Springer, Heidelberg (2012) es_ES
dc.description.references Sobehart, J.R., Keenan, S.C.: A practical review and test of default prediction models. RMA J. 84, 54–59 (2001) es_ES
dc.description.references Swets, J.A.: Signal Detection Theory and ROC Analysis in Psychology and Diagnostics. Collected Papers Lawrence Erlbaum Associates (1996) es_ES
dc.description.references Wilner, B.: The exploitation of relationships in financial distress: the case of trade credit. J. Financ. 55, 153–178 (2000) es_ES
dc.description.references Zweig, M.H., Campbell, G.: Receiver-operating characteristic (ROC) plots: a fundamental evaluation tool in clinical medicine. Clin. Chem. 39, 561–577 (1993) es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem