- -

Acoustic properties of porous concrete made from arlite and vermiculite lightweight aggregates

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

Acoustic properties of porous concrete made from arlite and vermiculite lightweight aggregates

Show full item record

Carbajo San Martín, J.; Esquerdo Lloret, TV.; Ramis Soriano, J.; Nadal Gisbert, AV.; Denia Guzmán, FD. (2015). Acoustic properties of porous concrete made from arlite and vermiculite lightweight aggregates. Materiales de Construcción. 65(320):1-11. doi:10.3989/mc.2015.01115

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/63888

Files in this item

Item Metadata

Title: Acoustic properties of porous concrete made from arlite and vermiculite lightweight aggregates
Secondary Title: Propiedades acústicas del hormigón poroso a base de áridos ligeros de arlita y vermiculita
Author:
UPV Unit: Universitat Politècnica de València. Instituto de Diseño para la Fabricación y Producción Automatizada - Institut de Disseny per a la Fabricació i Producció Automatitzada
Universitat Politècnica de València. Instituto de Tecnología de Materiales - Institut de Tecnologia de Materials
Universitat Politècnica de València. Centro de Investigación en Ingeniería Mecánica
Issued date:
Abstract:
[EN] The use of sustainable materials is becoming a common practice for noise abatement in building and civil engineering industries. In this context, many applications have been found for porous concrete made from lightweight ...[+]


[ES] El uso de materiales sostenibles se está convirtiendo en una práctica común para la reducción de ruido en las industrias de la edificación e ingeniería civil. Este trabajo investiga las propiedades acústicas de ...[+]
Subjects: Acoustic impedance , Absorption coefficient , Porous concrete , Lightweight aggregates , Impedancia acústica , Coeficiente de absorción , Hormigón poroso , Agregados ligeros
Copyrigths: Reconocimiento - No comercial (by-nc)
Source:
Materiales de Construcción. (issn: 0465-2746 ) (eissn: 1988-3226 )
DOI: 10.3989/mc.2015.01115
Publisher:
CSIC
Publisher version: http://dx.doi.org/10.3989/mc.2015.01115
Type: Artículo

References

Tutikian, B. F., Nunes, M. F. O., Leal, L. C., & Marquetto, L. (2012). Hormigón ligero con agregado reciclado de EVA para atenuación del ruido de impacto. Materiales de Construcción, 63(310), 309-316. doi:10.3989/mc.2012.06911

Krezel, Z. A., & McManus, K. (2000). Recycled aggregate concrete sound barriers for urban freeways. Waste Management Series, 884-892. doi:10.1016/s0713-2743(00)80097-5

Kim, H. K., & Lee, H. K. (2010). Influence of cement flow and aggregate type on the mechanical and acoustic characteristics of porous concrete. Applied Acoustics, 71(7), 607-615. doi:10.1016/j.apacoust.2010.02.001 [+]
Tutikian, B. F., Nunes, M. F. O., Leal, L. C., & Marquetto, L. (2012). Hormigón ligero con agregado reciclado de EVA para atenuación del ruido de impacto. Materiales de Construcción, 63(310), 309-316. doi:10.3989/mc.2012.06911

Krezel, Z. A., & McManus, K. (2000). Recycled aggregate concrete sound barriers for urban freeways. Waste Management Series, 884-892. doi:10.1016/s0713-2743(00)80097-5

Kim, H. K., & Lee, H. K. (2010). Influence of cement flow and aggregate type on the mechanical and acoustic characteristics of porous concrete. Applied Acoustics, 71(7), 607-615. doi:10.1016/j.apacoust.2010.02.001

Tiwari, V., Shukla, A., & Bose, A. (2004). Acoustic properties of cenosphere reinforced cement and asphalt concrete. Applied Acoustics, 65(3), 263-275. doi:10.1016/j.apacoust.2003.09.002

Losa, M., Leandri, P., & Bacci, R. (2008). Mechanical and Performance-Related Properties of Asphalt Mixes Containing Expanded Clay Aggregate. Transportation Research Record: Journal of the Transportation Research Board, 2051(1), 23-30. doi:10.3141/2051-04

Freitas, E., Mendonça, C., Santos, J. A., Murteira, C., & Ferreira, J. P. (2012). Traffic noise abatement: How different pavements, vehicle speeds and traffic densities affect annoyance levels. Transportation Research Part D: Transport and Environment, 17(4), 321-326. doi:10.1016/j.trd.2012.02.001

Pacheco-Torgal, F., & Jalali, S. (2011). Cementitious building materials reinforced with vegetable fibres: A review. Construction and Building Materials, 25(2), 575-581. doi:10.1016/j.conbuildmat.2010.07.024

Asdrubali, F., Schiavoni, S., & Horoshenkov, K. V. (2012). A Review of Sustainable Materials for Acoustic Applications. Building Acoustics, 19(4), 283-311. doi:10.1260/1351-010x.19.4.283

Melo, M. O. B. C., da Silva, L. B., Coutinho, A. S., Sousa, V., & Perazzo, N. (2012). Energy efficiency in building installations using thermal insulating materials in northeast Brazil. Energy and Buildings, 47, 35-43. doi:10.1016/j.enbuild.2011.11.021

Schackow, A., Effting, C., Folgueras, M. V., Güths, S., & Mendes, G. A. (2014). Mechanical and thermal properties of lightweight concretes with vermiculite and EPS using air-entraining agent. Construction and Building Materials, 57, 190-197. doi:10.1016/j.conbuildmat.2014.02.009

Miki, Y. (1990). Acoustical properties of porous materials. Generalizations of empirical models. Journal of the Acoustical Society of Japan (E), 11(1), 25-28. doi:10.1250/ast.11.25

Stinson, M. R., & Champoux, Y. (1992). Propagation of sound and the assignment of shape factors in model porous materials having simple pore geometries. The Journal of the Acoustical Society of America, 91(2), 685-695. doi:10.1121/1.402530

Allard, J., & Champoux, Y. (1992). New empirical equations for sound propagation in rigid frame fibrous materials. The Journal of the Acoustical Society of America, 91(6), 3346-3353. doi:10.1121/1.402824

Attenborough, K., Bashir, I., & Taherzadeh, S. (2011). Outdoor ground impedance models. The Journal of the Acoustical Society of America, 129(5), 2806-2819. doi:10.1121/1.3569740

Swift, M. ., Bris, P., & Horoshenkov, K. . (1999). Acoustic absorption in re-cycled rubber granulate. Applied Acoustics, 57(3), 203-212. doi:10.1016/s0003-682x(98)00061-9

Horoshenkov, K. V., & Swift, M. J. (2001). The acoustic properties of granular materials with pore size distribution close to log-normal. The Journal of the Acoustical Society of America, 110(5), 2371-2378. doi:10.1121/1.1408312

Horoshenkov, K. V., Hughes, D. C., & Cwirzen, A. (2003). The sound speed and attenuation in loose and consolidated granular formulations of high alumina cements. Applied Acoustics, 64(2), 197-212. doi:10.1016/s0003-682x(02)00069-5

Vašina, M., Hughes, D. C., Horoshenkov, K. V., & Lapčík, L. (2006). The acoustical properties of consolidated expanded clay granulates. Applied Acoustics, 67(8), 787-796. doi:10.1016/j.apacoust.2005.08.003

Brown, R. J. S. (1980). Connection between formation factor for electrical resistivity and fluid‐solid coupling factor in Biot’s equations for acoustic waves in fluid‐filled porous media. GEOPHYSICS, 45(8), 1269-1275. doi:10.1190/1.1441123

Ingard, K. U., & Dear, T. A. (1985). Measurement of acoustic flow resistance. Journal of Sound and Vibration, 103(4), 567-572. doi:10.1016/s0022-460x(85)80024-9

Leclaire, P., Swift, M. J., & Horoshenkov, K. V. (1998). Determining the specific area of porous acoustic materials from water extraction data. Journal of Applied Physics, 84(12), 6886-6890. doi:10.1063/1.368985

Geslain, A., Groby, J. P., Dazel, O., Mahasaranon, S., Horoshenkov, K. V., & Khan, A. (2012). An application of the Peano series expansion to predict sound propagation in materials with continuous pore stratification. The Journal of the Acoustical Society of America, 132(1), 208-215. doi:10.1121/1.4728188

[-]

This item appears in the following Collection(s)

Show full item record