- -

A methodology to select particle morpho-chemical characteristics to use in source apportionment of particulate matter from livestock houses

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

A methodology to select particle morpho-chemical characteristics to use in source apportionment of particulate matter from livestock houses

Show simple item record

Files in this item

dc.contributor.author Cambra López, María es_ES
dc.contributor.author Hermosilla Gómez, Txomin es_ES
dc.contributor.author Aarnink, André Johannes Antonius es_ES
dc.contributor.author Ogink, Nico es_ES
dc.date.accessioned 2016-05-11T08:14:04Z
dc.date.available 2016-05-11T08:14:04Z
dc.date.issued 2012-02
dc.identifier.issn 0168-1699
dc.identifier.uri http://hdl.handle.net/10251/63889
dc.description.abstract [EN] Intensive poultry and pig houses are major point sources of particulate matter (PM) emissions. The knowledge on the contribution of individual sources to PM in different fractions is essential to improve PM reduction from livestock houses. We developed a methodology to investigate which input data (particle chemical, morphological or combined characteristics) were best to distinguish amongst specific sources of airborne PM in livestock houses. We used a validation procedure with classification rules based on decision trees and analyzed misclassification errors. The PM from two livestock species (poultry and pigs), and in two different fractions (fine and coarse) was studied. Results showed the selection of the best input data varied with the sources, which depend on livestock species. Using only particle chemical characteristics resulted in higher overall classification accuracies (62–68%) than using only morphological characteristics (40–64%) in poultry and pigs. Particle morphological characteristics can add value when sources show distinctive and well defined morphologies or differ in size. Using combined chemical and morphological resulted in the highest overall classification accuracies (average of 69% of particles correctly assigned to their source) and lowest misclassification errors. This study provides a methodological approach to assess input data and identifies the most effective characteristics to apportion PM in livestock houses. These data are promising to determine the contribution of different sources to PM in livestock houses and give insight in under- and overestimation errors in the source apportionment. 2011 Published by Elsevier B.V. es_ES
dc.description.sponsorship We acknowledge the support of the Dutch Ministry of Agriculture, Nature and Food Quality that financed this study. We thank the Servicio de Microscopia Electronica (Universidad Politecnica de Valencia) for expert technical assistance during SEM analysis. en_EN
dc.language Inglés es_ES
dc.publisher Elsevier es_ES
dc.relation.ispartof Computers and Electronics in Agriculture es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Atmospheric pollution es_ES
dc.subject Animal housing es_ES
dc.subject Dust es_ES
dc.subject Expert systems es_ES
dc.subject Image analysis es_ES
dc.subject.classification BIOLOGIA ANIMAL es_ES
dc.subject.classification PRODUCCION ANIMAL es_ES
dc.title A methodology to select particle morpho-chemical characteristics to use in source apportionment of particulate matter from livestock houses es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1016/j.compag.2011.11.002
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ciencia Animal - Departament de Ciència Animal es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Cartográfica Geodesia y Fotogrametría - Departament d'Enginyeria Cartogràfica, Geodèsia i Fotogrametria es_ES
dc.description.bibliographicCitation Cambra López, M.; Hermosilla Gómez, T.; Aarnink, AJA.; Ogink, N. (2012). A methodology to select particle morpho-chemical characteristics to use in source apportionment of particulate matter from livestock houses. Computers and Electronics in Agriculture. 81:14-23. doi:10.1016/j.compag.2011.11.002 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://dx.doi.org/10.1016/j.compag.2011.11.002 es_ES
dc.description.upvformatpinicio 14 es_ES
dc.description.upvformatpfin 23 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 81 es_ES
dc.relation.senia 217398 es_ES
dc.identifier.eissn 1872-7107
dc.contributor.funder Ministry of Agriculture, Nature and Food Quality, Holanda es_ES


This item appears in the following Collection(s)

Show simple item record