- -

Minimum Bayes’ risk subsequence combination for machine translation

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

Minimum Bayes’ risk subsequence combination for machine translation

Show full item record

González Rubio, J.; Casacuberta Nolla, F. (2015). Minimum Bayes’ risk subsequence combination for machine translation. Pattern Analysis and Applications. 18(3):523-533. doi:10.1007/s10044-014-0387-5

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/63924

Files in this item

Item Metadata

Title: Minimum Bayes’ risk subsequence combination for machine translation
Author: Gonzalez Rubio, Jesus Casacuberta Nolla, Francisco
UPV Unit: Universitat Politècnica de València. Departamento de Sistemas Informáticos y Computación - Departament de Sistemes Informàtics i Computació
Issued date:
Abstract:
System combination has proved to be a successful technique in the pattern recognition field. However, several difficulties arise when combining the outputs of tasks, e.g. machine translation, that generate structured ...[+]
Subjects: Minimum Bayes’ risk , System combination , Statistical machine translation
Copyrigths: Reserva de todos los derechos
Source:
Pattern Analysis and Applications. (issn: 1433-7541 ) (eissn: 1433-755X )
DOI: 10.1007/s10044-014-0387-5
Publisher:
Springer Verlag (Germany)
Publisher version: http://dx.doi.org/10.1007/s10044-014-0387-5
Project ID:
EC (FEDER/FSE) and the Spanish MEC/MICINN under the MIPRCV ‘‘Consolider Ingenio 2010’’ program (CSD2007-00018)
iTrans2 (TIN2009-14511) project
UPV under Grant 20091027
Spanish MITyC under the erudito.com (TSI-020110-2009-439) project
Generalitat Valenciana under grant Prometeo/2009/014
Description: The final publication is available at Springer via http://dx.doi.org/10.1007/s10044-014-0387-5
Thanks:
Work supported by the EC (FEDER/FSE) and the Spanish MEC/MICINN under the MIPRCV "Consolider Ingenio 2010'' program (CSD2007-00018), the iTrans2 (TIN2009-14511) project, the UPV under Grant 20091027, the Spanish MITyC under ...[+]
Type: Artículo

References

Bangalore S (2001) Computing consensus translation from multiple machine translation systems. In: IEEE automatic speech recognition and understanding workshop, pp 351–354

Becker MA (2008) Active learning - an explicit treatment of unreliable parameters. Ph.D. thesis, University of Edinburgh

Bellman R (1957) Dynamic programming. Princeton University Press, Princeton [+]
Bangalore S (2001) Computing consensus translation from multiple machine translation systems. In: IEEE automatic speech recognition and understanding workshop, pp 351–354

Becker MA (2008) Active learning - an explicit treatment of unreliable parameters. Ph.D. thesis, University of Edinburgh

Bellman R (1957) Dynamic programming. Princeton University Press, Princeton

Bickel PJ, Doksum KA (1977) Mathematical statistics : basic ideas and selected topics. Holden-Day, San Francisco

Callison-burch C, Flournoy RS (2001) A program for automatically selecting the best output from multiple machine translation engines. In: Proceedings of the VIII machine translation summit, pp 63–66

Callison-Burch C, Fordyce C, Koehn P, Monz C, Schroeder J (2008) Further meta-evaluation of machine translation. In: Proceedings of the 3rd Workshop on statistical machine translation, Association for Computational Linguistics, pp 70–106

Callison-Burch C, Koehn P, Monz C, Schroeder J (2009) Findings of the 2009 workshop on statistical machine translation. In: Proceedings of the 4th workshop on statistical machine translation, Association for Computational Linguistics, Athens, pp 1–28

Callison-Burch C, Koehn P, Monz C, Zaidan OF (eds) (2011) Proceedings of the 6th workshop on statistical machine translation. Association for Computational Linguistics, Edinburgh

Chinchor N (1992) The statistical significance of the muc-4 results. In: Proceedings of the conference on message understanding, pp 30–50

DeNero J, Chiang D, Knight K (2009) Fast consensus decoding over translation forests. In: Proceedings of the 47th annual meeting of the Association for Computational Linguistics, Association for Computational Linguistics, pp 567–575

DeNero J, Kumar S, Chelba C, Och F (2010) Model combination for machine translation. In: Proceedings of the 11th conference of the North American chapter of the Association for Computational Linguistics, Association for Computational Linguistics, pp 975–983

Dietterich TG (2000) Ensemble methods in machine learning. In: Proceedings of the 1st International workshop on multiple classifier systems, MCS ’00, Springer, pp 1–15

Duan N, Li M, Zhang D, Zhou M (2010) Mixture model-based minimum bayes risk decoding using multiple machine translation systems. In: Proceedings of the 23rd conference on Computational Linguistics, pp 313–321

Duda RO, Hart PE, Stork DG (2001) Pattern classification, 2nd edn. Wiley, New York

Ehling N, Zens R, Ney H (2007) Minimum bayes risk decoding for bleu. In: Proceedings of the 45th annual aeeting of the Association for Computational Linguistics, Association for Computational Linguistics, pp 101–104

Fiscus JG (1997) A post-processing system to yield reduced Word error rates: recogniser output voting error reduction (ROVER). In: Proceedings IEEE Workshop on automatic speech recognition and understanding, pp 347–352

González-Rubio J, Juan A, Casacuberta F (2011) Minimum bayes-risk system combination. In: Proceedings of the 49th annual meeting of the Association for Computational Linguistics, pp 1268–1277

González-Rubio J, Casacuberta F (2011) The UPV-PRHLT combinatio nsystem for WMT 2011. In: Proceedings of the 49th annual meeting of the Association for Computational Linguistics, pp 1268–1277

He X, Toutanova K (2009) Joint optimization for machine translation system combination. In: Proceedings of the 2009 conference on empirical methods in natural language processing, Association for Computational Linguistics, pp 1202–1211

He X, Yang M, Gao J, Nguyen P, Moore R (2008) Indirect-hmm-based hypothesis alignment for combining outputs from machine translation systems. In: Proceedings of the 2008 conference on empirical methods in natural language processing, Association for Computational Linguistics, pp 98–107

Heafield K, Lavie A (2011) Cmu system combination in wmt 2011. In: Proceedings of the 6th workshop on statistical machine translation, Association for Computational Linguistics, Edinburgh, pp 145–151

Jayaraman S, Lavie A (2005) Multi-engine machine translation guided by explicit word matching. In: Proceeding of the 10th conference of the European Association for Machine Translation, pp 143–152

Jelinek F (1997) Statistical methods for speech recognition. MIT Press, Cambridge

Kittler J, Hatef M, Duin RPW, Matas J (1998) On combining classifiers. IEEE Trans Pattern Anal Mach Intell 20:226–239. doi: 10.1109/34.667881.

Knight K (1999) Decoding complexity in word-replacement translation models. Comput Linguist 25(4):607–615. http://dl.acm.org/citation.cfm?id=973226.973232

Kumar S, Macherey W, Dyer C, Och F (2009) Efficient minimum error rate training and minimum bayes-risk decoding for translation hypergraphs and lattices. In: Proceedings of the 47th annual meeting of the Association for Computational Linguistics, Association for Computational Linguistics, pp 163–171

Land AH, Doig AG (1960) An automatic method of solving discrete programming problems. Econometrica 28(3):497–520

Larkey LS, Croft BW (1996) Combining classifiers in text categorization. In: Frei HP, Harman D, Schäuble P, Wilkinson R (eds) Proceedings of the 19th ACM International Conference on Research and Development in Information Retrieval. ACM Press, New York, pp 289–297

Leusch G, Freitag M, Ney H (2011) The rwth system combination system for wmt 2011. In: Proceedings of the 6th workshop on Statistical Machine Translation, Association for Computational Linguistics, Edinburgh, pp 152–158

Matusov E, Leusch G, Banchs RE, Bertoldi N, Dechelotte D, Federico M, Kolss M, suk Lee Y, no JBM, Paulik M, Roukos S, Schwenk H, Ney H (2008) System combination for machine translation of spoken and written language. IEEE Trans Audio Speech Lang Process 16:1222–1237

Nelder JA, Mead R (1965) A simplex method for function minimization. Comput J 7(4):308–313

NIST (2006) NIST 2006 machine translation evaluation official results. http://www.itl.nist.gov/iad/mig/tests/mt/

Nomoto T (2004) Multi-engine machine translation with voted language model. In: Proceedings of the 42nd annual meeting on Association for Computational Linguistics, Association for Computational Linguistics, pp 494–501

Noreen E (1989) Computer-intensive methods for testing hypotheses: an introduction. A wiley interscience publication. Wiley, New York

Och FJ (2003) Minimum error rate training in statistical machine translation. In: Proceedings of the 41st annual meeting on Association for Computational Linguistics, Association for Computational Linguistics, pp 160–167

Papineni K, Roukos S, Ward T, Zhu WJ (2002) BLEU: a method for automatic evaluation of machine translation. In: Proceedings of the 40th annual meeting on Association for Computational Linguistics, Association for Computational Linguistics, pp 311–318

Paul M, Doi T, Hwang Y, Imamura K, Okuma H, Sumita E (2005) Nobody is perfect: atr’s hybrid approach to spoken language translation. In: Proceedings of the 2005 International Workshop on spoken language translation, pp 55–62

Rosti A, Ayan NF, Xiang B, Matsoukas S, Schwartz R, Dorr B (2007) Combining outputs from multiple machine translation systems. In: Proceedings of the 6th conference of the North American Chapter of the Association for Computational Linguistics, Association for Computational Linguistics, pp 228–235

Rosti A, Zhang B, Matsoukas S, Schwartz R (2011) Expected bleu training for graphs: Bbn system description for wmt11 system combination task. In: Proceedings of the 6th workshop on statistical machine translation, Association for Computational Linguistics, pp 159–165

Roth D, Zelenko D (1998) Part of speech tagging using a network of linear separators. In: Proceedings of the 17th international conference on Computational linguistics - Volume 2, COLING ’98, Association for Computational Linguistics, pp 1136–1142

Snover M, Dorr B, Schwartz R, Micciulla L, Weischedel R (2006) A study of translation error rate with targeted human annotation. In: Proceedings of the 7th conference of the Association for Machine Transaltion in the Americas, pp 223–231

Stanley R (2002) Enumerative combinatorics. Cambridge studies in advanced mathematics. Cambridge University Press, Cambridge

Udupa R, Maji HK (2006) Computational complexity of statistical machine translation. In: McCarthy D, Wintner S (eds) Proceedings of the European Chapter of the Association for Computational Linguistics. The Association for Computer Linguistics. http://acl.ldc.upenn.edu/E/E06/E06-1004

Xu D, Cao Y, Karakos D (2011) Description of the jhu system combination scheme for wmt 2011. In: Proceedings of the 6th workshop on Statistical Machine Translation, Association for Computational Linguistics, pp 171–176

[-]

This item appears in the following Collection(s)

Show full item record