- -

Synthesis, Structure, Gas-Phase Reactivity, and Catalytic Relevance of Trinuclear Mo3S4 Clusters Bearing Terminal Hydroxo and Hydrosulfido Groups

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Synthesis, Structure, Gas-Phase Reactivity, and Catalytic Relevance of Trinuclear Mo3S4 Clusters Bearing Terminal Hydroxo and Hydrosulfido Groups

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Beltran, Tomas F. es_ES
dc.contributor.author Feliz Rodriguez, Marta es_ES
dc.contributor.author Llusar, Rosa es_ES
dc.contributor.author Safont, Vicent S. es_ES
dc.contributor.author Vicent, Cristian es_ES
dc.date.accessioned 2016-05-12T07:38:23Z
dc.date.available 2016-05-12T07:38:23Z
dc.date.issued 2013-11-12
dc.identifier.issn 1434-1948
dc.identifier.uri http://hdl.handle.net/10251/63948
dc.description.abstract Molybdenum(IV) hydroxo [Mo3S4(dmpe)3(OH)3]+ (1+) and hydrosulfido [Mo3S4(dmpe)3(SH)3]+ (2+) [dmpe = 1,2-bis(dimethylphosphanyl)ethane] trimetallic cuboidal cluster complexes have been isolated in high yields by treating their chloride precursors with sodium hydroxide or sodium hydrosulfide, respectively. The crystal structures of [1]BPh4 and [2]PF6 confirm that QH (Q = O, S) groups are coordinated to metal centers. Both hydroxo and hydrosulfido Mo3S4 cluster complexes are fully characterized by spectroscopic, mass spectrometric, and X-ray techniques. A comparative study of the gas-phase dissociation of 1+ and 2+ cations using ESI tandem mass spectrometry is presented, and the results are compared with those already reported for the hydroxo tungsten analogue. The gas-phase reactivity of 1+ and 2+ species towards ethanol and 1-penthanethiol have been explored. The gas-phase-generated [Mo3S4(dmpe)2(O)(OH)]+ cation activates ethanol molecules through a similar mechanism to that proposed for its tungsten congener. The main differences in aldehyde elimination under collision-induced dissociation (CID) conditions between molybdenum and tungsten cluster sulfides are discussed. es_ES
dc.description.sponsorship The financial support of the Spanish Ministerio de Economia y Competitividad (MEC) (grant number CTQ2011-23157, research project MAT2011-28009), Fundacio Bancaixa-UJI (research project P1.1B2010-46), Universitat Politecnica de Valencia (PAID-06-12/SP20120740), and the Generalitat Valenciana (Prometeo/2009/053 and ACOMP/2013/2013/215) is gratefully acknowledged. The authors also thank the Serveis Central d'Instrumentacio Cientifica (SCIC) of the Universitat Jaume I for providing mass spectrometry, NMR spectroscopy, infrared, and X-ray facilities. T. B. thanks the Spanish Ministerio de Ciencia e Innovacion (MICINN) for a doctoral fellowship (FPI). en_EN
dc.language Inglés es_ES
dc.publisher Wiley-VCH Verlag es_ES
dc.relation.ispartof European Journal of Inorganic Chemistry es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Molybdenum es_ES
dc.subject Cluster compounds es_ES
dc.subject Mass spectrometry es_ES
dc.subject Gas-phase reactions es_ES
dc.subject Density functional calculations es_ES
dc.title Synthesis, Structure, Gas-Phase Reactivity, and Catalytic Relevance of Trinuclear Mo3S4 Clusters Bearing Terminal Hydroxo and Hydrosulfido Groups es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1002/ejic.201300890
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//CTQ2011-23157/ES/FUNCIONALIZACION DE CALCOGENUROS CLUSTER DE METALES DE LOS GRUPOS 6 Y 7 DIRIGIDA AL DESARROLLO DE MATERIALES MOLECULARES Y SOPORTADOS CON APLICACIONES EN CATALISIS ORGANICA/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//MAT2011-28009/ES/CATALIZADORES MONO- Y MULTIFUNCIONALES BASADOS EN NANOPARTICULAS METALICAS DIRIGIDOS A TRANSFORMACIONES SECUENCIALES O REACCIONES EN CASCADA/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/UJI//P1·1B2010-46/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/UPV//PAID-06-12-SP20120740/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//PROMETEO09%2F2009%2F053/ES/Química teórica y computacional de sistemas biológicos, sólidos y de materiales moleculares (Quitecobismm)/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//ACOMP%2F2013%2F215/ es_ES
dc.rights.accessRights Cerrado es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario Mixto de Tecnología Química - Institut Universitari Mixt de Tecnologia Química es_ES
dc.description.bibliographicCitation Beltran, TF.; Feliz Rodriguez, M.; Llusar, R.; Safont, VS.; Vicent, C. (2013). Synthesis, Structure, Gas-Phase Reactivity, and Catalytic Relevance of Trinuclear Mo3S4 Clusters Bearing Terminal Hydroxo and Hydrosulfido Groups. European Journal of Inorganic Chemistry. 33:5797-5805. https://doi.org/10.1002/ejic.201300890 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/10.1002/ejic.201300890 es_ES
dc.description.upvformatpinicio 5797 es_ES
dc.description.upvformatpfin 5805 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 33 es_ES
dc.relation.senia 260175 es_ES
dc.contributor.funder Ministerio de Ciencia e Innovación es_ES
dc.contributor.funder Universitat Jaume I; Fundació Caixa Castelló - Bancaixa es_ES
dc.contributor.funder Universitat Politècnica de València es_ES
dc.contributor.funder Generalitat Valenciana es_ES
dc.description.references Calkins, W. H. (1984). Chemicals from Methanol. Catalysis Reviews, 26(3-4), 347-358. doi:10.1080/01614948408064717 es_ES
dc.description.references Sheldon, R. ., Arends, I. W. C. ., & Dijksman, A. (2000). New developments in catalytic alcohol oxidations for fine chemicals synthesis. Catalysis Today, 57(1-2), 157-166. doi:10.1016/s0920-5861(99)00317-x es_ES
dc.description.references Okamoto, Y., Oshima, N., Kobayashi, Y., Terasaki, O., Kodaira, T., & Kubota, T. (2002). Structure of intrazeolite molybdenum oxide clusters and their catalysis of the oxidation of ethyl alcohol. Physical Chemistry Chemical Physics, 4(12), 2852-2862. doi:10.1039/b108639c es_ES
dc.description.references Grange, P. (1980). Catalytic Hydrodesulfurization. Catalysis Reviews, 21(1), 135-181. doi:10.1080/03602458008068062 es_ES
dc.description.references Tops⊘e, H., & Clausen, B. S. (1984). Importance of Co-Mo-S Type Structures in Hydrodesulfurization. Catalysis Reviews, 26(3-4), 395-420. doi:10.1080/01614948408064719 es_ES
dc.description.references Topsøe, H., & Clausen, B. S. (1986). Active sites and support effects in hydrodesulfurization catalysts. Applied Catalysis, 25(1-2), 273-293. doi:10.1016/s0166-9834(00)81246-4 es_ES
dc.description.references Beltrán, T. F., Feliz, M., Llusar, R., Mata, J. A., & Safont., V. S. (2011). Mechanism of the Catalytic Hydrodefluorination of Pentafluoropyridine by Group Six Triangular Cluster Hydrides Containing Phosphines: A Combined Experimental and Theoretical Study. Organometallics, 30(2), 290-297. doi:10.1021/om1009878 es_ES
dc.description.references Sorribes, I., Wienhöfer, G., Vicent, C., Junge, K., Llusar, R., & Beller, M. (2012). Chemoselective Transfer Hydrogenation to Nitroarenes Mediated by Cubane-Type Mo3S4Cluster Catalysts. Angewandte Chemie, 124(31), 7914-7918. doi:10.1002/ange.201202584 es_ES
dc.description.references Hou, Y., Abrams, B. L., Vesborg, P. C. K., Björketun, M. E., Herbst, K., Bech, L., … Chorkendorff, I. (2011). Bioinspired molecular co-catalysts bonded to a silicon photocathode for solar hydrogen evolution. Nature Materials, 10(6), 434-438. doi:10.1038/nmat3008 es_ES
dc.description.references Fettinger, J. C., Kraatz, H.-B., Poli, R., & Alessandra Quadrelli, E. (1997). First mononuclear organometallics of MoII and MoIII containing terminal hydroxide ligands. X-Ray structure of [Mo(η5-C5H5)(OH)(PMe3) 3]BF4. Chemical Communications, (9), 889-890. doi:10.1039/a701616f es_ES
dc.description.references Kuwata, S., & Hidai, M. (2001). Hydrosulfido complexes of transition metals. Coordination Chemistry Reviews, 213(1), 211-305. doi:10.1016/s0010-8545(00)00375-1 es_ES
dc.description.references Fulton, J. R., Holland, A. W., Fox, D. J., & Bergman, R. G. (2002). Formation, Reactivity, and Properties of Nondative Late Transition Metal−Oxygen and −Nitrogen Bonds. Accounts of Chemical Research, 35(1), 44-56. doi:10.1021/ar000132x es_ES
dc.description.references Smith, S. J., Whaley, C. M., Rauchfuss, T. B., & Wilson, S. R. (2006). MS2(Me2PC2H4PMe2)2(M = Mo, W):  Acid−Base Properties, Proton Transfer, and Reversible Protonolysis of Sulfido Ligands. Inorganic Chemistry, 45(2), 679-687. doi:10.1021/ic051443c es_ES
dc.description.references Schwarz, D. E., Rauchfuss, T. B., & Wilson, S. R. (2003). Aggregation of PMe3-Stabilized Molybdenum Sulfides and the Catalytic Dehydrogenation of H2S. Inorganic Chemistry, 42(7), 2410-2417. doi:10.1021/ic026215m es_ES
dc.description.references DeSimone, R. E., & Glick, M. D. (1978). Structural chemistry of molybdenum complexes of cyclic polythiaethers. Crystal and molecular structure of (hydrosulfido)(oxo)(1,5,9,13-tetrathiacyclohexadecane)molybdenum(IV) trifluoromethanesulfonate. Inorganic Chemistry, 17(12), 3574-3577. doi:10.1021/ic50190a048 es_ES
dc.description.references Gerbino, D. C., Hevia, E., Morales, D., Clemente, M. E. N., Pérez, J., Riera, L., … Miguel, D. (2003). A new reactivity pattern of low-valent transition-metal hydroxo complexes: straightforward synthesis of hydrosulfido complexes via reaction with carbon disulfide. Chemical Communications, (3), 328. doi:10.1039/b210860g es_ES
dc.description.references Luo, X.-L., Kubas, G. J., Burns, C. J., & Butcher, R. J. (1995). Novel Synthetic Route to Molybdenum Hydrido-Thiocarbamoyl and Hydrosulfido-Carbyne Complexes by Reactions of trans-Mo(N2)2(R2PC2H4PR2)2 with N,N-Dimethylthioformamide. Organometallics, 14(7), 3370-3376. doi:10.1021/om00007a043 es_ES
dc.description.references Müller, A., & Serain, C. (2000). Soluble Molybdenum Blues«des Pudels Kern»†. Accounts of Chemical Research, 33(1), 2-10. doi:10.1021/ar9601510 es_ES
dc.description.references Lemonnier, J.-F., Floquet, Sã©., Marrot, Jã©., & Cadot, E. (2009). Polyoxothiomolybdenum Wheels as Anionic Receptors for Recognition of Sulfate and Sulfonate Anions. European Journal of Inorganic Chemistry, 2009(34), 5233-5239. doi:10.1002/ejic.200900613 es_ES
dc.description.references Cadot, E., Sokolov, M. N., Fedin, V. P., Simonnet-Jégat, C., Floquet, S., & Sécheresse, F. (2012). A building block strategy to access sulfur-functionalized polyoxometalate based systems using {Mo2S2O2} and {Mo3S4} as constitutional units, linkers or templates. Chemical Society Reviews, 41(22), 7335. doi:10.1039/c2cs35145e es_ES
dc.description.references Morales, D., Pleune, B., Poli, R., & Richard, P. (2000). Preparation and structure of the 17-electron (η5-C5R5)Mo(OH)2(dppe) (R=Me, Et) organometallic compounds containing two gem-terminal hydroxide ligands. Journal of Organometallic Chemistry, 596(1-2), 64-69. doi:10.1016/s0022-328x(99)00539-2 es_ES
dc.description.references Zhu, G., & Parkin, G. (2005). Synthesis and Structural Characterization of M(PMe3)3(O2CR)2(OH2)H2(M = Mo, W):  Aqua−Hydride Complexes of Molybdenum and Tungsten. Inorganic Chemistry, 44(26), 9637-9639. doi:10.1021/ic051617q es_ES
dc.description.references Dance, I. (1997). Calculated details of a mechanism for conversion of N2 to NH3 at the FeMo cluster of nitrogenase. Chemical Communications, (2), 165-166. doi:10.1039/a607136h es_ES
dc.description.references Coucouvanis, D. (1998). Syntheses, Structures, and Reactions of Binary and Tertiary Thiomolybdate Complexes Containing the (O)Mo(Sx) AND (S)Mo(Sx) Functional Groups (x = 1, 2, 4). Advances in Inorganic Chemistry, 1-73. doi:10.1016/s0898-8838(08)60024-0 es_ES
dc.description.references Llusar, R., & Uriel, S. (2003). Heterodimetallic Chalcogen-Bridged Cubane-Type Clusters of Molybdenum and Tungsten Containing First-Row Transition Metals. European Journal of Inorganic Chemistry, 2003(7), 1271-1290. doi:10.1002/ejic.200390164 es_ES
dc.description.references Basallote, M. G., Feliz, M., Fernández-Trujillo, M. J., Llusar, R., Safont, V. S., & Uriel, S. (2004). Mechanism of the Reaction of the[W3S4H3(dmpe)3]+ Cluster with Acids: Evidence for the Acid-Promoted Substitution of Coordinated Hydrides and the Effect of the Attacking Species on the Kinetics of Protonation of the Metal-Hydride Bonds. Chemistry - A European Journal, 10(6), 1463-1471. doi:10.1002/chem.200305376 es_ES
dc.description.references Algarra, A. G., Basallote, M. G., Fernández-Trujillo, M. J., Feliz, M., Guillamón, E., Llusar, R., … Vicent, C. (2010). Chiral [Mo3S4H3(diphosphine)3]+Hydrido Clusters and Study of the Effect of the Metal Atom on the Kinetics of the Acid-Assisted Substitution of the Coordinated Hydride: Mo vs W. Inorganic Chemistry, 49(13), 5935-5942. doi:10.1021/ic100381u es_ES
dc.description.references Basallote, M. G., Fernández-Trujillo, M. J., Pino-Chamorro, J. Á., Beltrán, T. F., Corao, C., Llusar, R., … Vicent, C. (2012). Water-Soluble Mo3S4 Clusters Bearing Hydroxypropyl Diphosphine Ligands: Synthesis, Crystal Structure, Aqueous Speciation, and Kinetics of Substitution Reactions. Inorganic Chemistry, 51(12), 6794-6802. doi:10.1021/ic300517g es_ES
dc.description.references Vicent, C., Feliz, M., & Llusar, R. (2008). Intrinsic Gas-Phase Reactivity toward Methanol of Trinuclear Tungsten W3S4Complexes Bearing W−X (X = Br, OH) Groups. The Journal of Physical Chemistry A, 112(49), 12550-12558. doi:10.1021/jp804263q es_ES
dc.description.references Beltrán, T. F., Feliz, M., Llusar, R., Safont, V. S., & Vicent, C. (2011). Mechanism of the catalytic gas-phase aldehyde production from trinuclear W3S4 complexes bearing W-OEt groups. Catalysis Today, 177(1), 72-78. doi:10.1016/j.cattod.2011.05.017 es_ES
dc.description.references Cotton, F. A., Llusar, R., & Eagle, C. T. (1989). Triangular trinuclear cluster compounds: molybdenum and tungsten complexes of the type [M3S4(diphos)3X3]+ with X = Cl and H. Journal of the American Chemical Society, 111(12), 4332-4338. doi:10.1021/ja00194a027 es_ES
dc.description.references Basallote, M. G., Estevan, F., Feliz, M., Jesús Fernández-Trujillo, M., Hoyos, D. A., Llusar, R., … Vicent, C. (2004). Synthesis and structure of the incomplete cuboidal clusters [W3Se4H3(dmpe)3]+, [W3Se4H3−x(OH)x(dmpe)3]+and [W3Se4(OH)3(dmpe)3]+, and the mechanism of the acid-assisted substitution of the coordinated hydrides. Dalton Trans., (4), 530-536. doi:10.1039/b315841a es_ES
dc.description.references MINATO, M., & ITO, T. (2008). Molybdocenes and tungstenocenes derived from molybdenum(IV) and tungsten(IV) dihydride. Coordination Chemistry Reviews, 252(15-17), 1613-1629. doi:10.1016/j.ccr.2007.11.030 es_ES
dc.description.references Peruzzini, M., Rios, I. D. L., & Romerosa, A. (2007). Coordination Chemistry of Transition Metals with Hydrogen Chalcogenide and Hydrochalcogenido Ligands. Progress in Inorganic Chemistry, 169-453. doi:10.1002/9780470166512.ch3 es_ES
dc.description.references Iwasa, K., Seino, H., Niikura, F., & Mizobe, Y. (2009). Preparation of a bis(hydrosulfido) complex of Mo having a tetraphosphine co-ligand and its transformation into MoRh2 and MoIr2 mixed-metal sulfido clusters. Dalton Transactions, (31), 6134. doi:10.1039/b902386k es_ES
dc.description.references Cotton, F. A., & Llusar, R. (1987). Direct synthesis from MoCl3(THF)3 of a complex containing the [Mo3S4]4+ core. Polyhedron, 6(9), 1741-1745. doi:10.1016/s0277-5387(00)86545-6 es_ES
dc.description.references Estevan, F., Feliz, M., Llusar, R., Mata, J. A., & Uriel, S. (2001). High yield synthesis of trinuclear [M3S4X3(diphos)3]+ (M=Mo, W; X=Cl, Br and diphos=dmpe, dppe) molecular clusters from solid state materials. Synthesis and structure of [W3S4H3(dppe)3](BPh4). Polyhedron, 20(6), 527-535. doi:10.1016/s0277-5387(00)00640-9 es_ES
dc.description.references Hegetschweiler, K., Wörle, M., Meienberger, M. D., Nesper, R., Schmalle, H. W., & Hancock, R. D. (1996). Structural studies on [Mo3S4]4+ and [Mo3S4Cu]4+ complexes with tripodal ligands providing various NxOy (x + y = 3) donor sets. Inorganica Chimica Acta, 250(1-2), 35-47. doi:10.1016/s0020-1693(96)05208-5 es_ES
dc.description.references Waters, T., O’Hair, R. A. J., & Wedd, A. G. (2003). Catalytic Gas Phase Oxidation of Methanol to Formaldehyde. Journal of the American Chemical Society, 125(11), 3384-3396. doi:10.1021/ja028839x es_ES
dc.description.references Pudar, S., Oxgaard, J., Chenoweth, K., van Duin, A. C. T., & Goddard, W. A. (2007). Mechanism of Selective Oxidation of Propene to Acrolein on Bismuth Molybdates from Quantum Mechanical Calculations. The Journal of Physical Chemistry C, 111(44), 16405-16415. doi:10.1021/jp074452a es_ES
dc.description.references Guillamón, E., Llusar, R., Pozo, O., & Vicent, C. (2006). Ion chemistry of a series of cluster compounds with Mo3Q4 and Mo3M′Q4 (Q=S, Se; M′=Cu, Co, Ni) cores containing 1,2 diphosphanes as ancillary ligands: New insights on the gas-phase stability from electrospray tandem mass spectrometry. International Journal of Mass Spectrometry, 254(1-2), 28-36. doi:10.1016/j.ijms.2006.04.010 es_ES
dc.description.references SADABS 1996 es_ES
dc.description.references SAINT 2001 es_ES
dc.description.references CrysAlis Pro 2012 es_ES
dc.description.references Clark, R. C., & Reid, J. S. (1995). The analytical calculation of absorption in multifaceted crystals. Acta Crystallographica Section A Foundations of Crystallography, 51(6), 887-897. doi:10.1107/s0108767395007367 es_ES
dc.description.references Sheldrick, G. M. (2007). A short history ofSHELX. Acta Crystallographica Section A Foundations of Crystallography, 64(1), 112-122. doi:10.1107/s0108767307043930 es_ES
dc.description.references Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K., & Puschmann, H. (2009). OLEX2: a complete structure solution, refinement and analysis program. Journal of Applied Crystallography, 42(2), 339-341. doi:10.1107/s0021889808042726 es_ES
dc.description.references Becke, A. D. (1993). Density‐functional thermochemistry. III. The role of exact exchange. The Journal of Chemical Physics, 98(7), 5648-5652. doi:10.1063/1.464913 es_ES
dc.description.references Perdew, J. P., & Wang, Y. (1992). Accurate and simple analytic representation of the electron-gas correlation energy. Physical Review B, 45(23), 13244-13249. doi:10.1103/physrevb.45.13244 es_ES
dc.description.references Gaussian 03 2004 es_ES
dc.description.references Andrae, D., H�u�ermann, U., Dolg, M., Stoll, H., & Preu�, H. (1990). Energy-adjustedab initio pseudopotentials for the second and third row transition elements. Theoretica Chimica Acta, 77(2), 123-141. doi:10.1007/bf01114537 es_ES
dc.description.references Ehlers, A. W., Böhme, M., Dapprich, S., Gobbi, A., Höllwarth, A., Jonas, V., … Frenking, G. (1993). A set of f-polarization functions for pseudo-potential basis sets of the transition metals ScCu, YAg and LaAu. Chemical Physics Letters, 208(1-2), 111-114. doi:10.1016/0009-2614(93)80086-5 es_ES
dc.description.references Bergner, A., Dolg, M., Küchle, W., Stoll, H., & Preuß, H. (1993). Ab initio energy-adjusted pseudopotentials for elements of groups 13–17. Molecular Physics, 80(6), 1431-1441. doi:10.1080/00268979300103121 es_ES
dc.description.references Höllwarth, A., Böhme, M., Dapprich, S., Ehlers, A. W., Gobbi, A., Jonas, V., … Frenking, G. (1993). A set of d-polarization functions for pseudo-potential basis sets of the main group elements AlBi and f-type polarization functions for Zn, Cd, Hg. Chemical Physics Letters, 208(3-4), 237-240. doi:10.1016/0009-2614(93)89068-s es_ES
dc.description.references Hariharan, P. C., & Pople, J. A. (1973). The influence of polarization functions on molecular orbital hydrogenation energies. Theoretica Chimica Acta, 28(3), 213-222. doi:10.1007/bf00533485 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem