Mostrar el registro sencillo del ítem
dc.contributor.author | Bedhomme, Stephanie | es_ES |
dc.contributor.author | Lafforgue, Guillaume | es_ES |
dc.contributor.author | Elena Fito, Santiago Fco | |
dc.date.accessioned | 2016-05-12T10:50:37Z | |
dc.date.available | 2016-05-12T10:50:37Z | |
dc.date.issued | 2013-02-19 | |
dc.identifier.issn | 1471-2148 | |
dc.identifier.uri | http://hdl.handle.net/10251/63965 | |
dc.description.abstract | [EN] Background: The importance of historical contingency in determining the potential of viral populations to evolve has been largely unappreciated. Identifying the constraints imposed by past adaptations is, however, of importance for understanding many questions in evolutionary biology, such as the evolution of host usage dynamics by multi-host viruses or the emergence of escape mutants that persist in the absence of antiviral treatments. To address this issue, we undertook an experimental approach in which sixty lineages of Tobacco etch potyvirus that differ in their past evolutionary history and degree of adaptation to Nicotiana tabacum were allowed to adapt to this host for 15 rounds of within host multiplication and transfer. We thereafter evaluated the degree of adaptation to the new host as well as to the original ones and characterized the consensus sequence of each lineage. Results: We found that past evolutionary history did not determine the phenotypic outcome of this common host evolution phase, and that the signal of local adaptation to past hosts had largely disappeared. By contrast, evolutionary history left footprints at the genotypic level, since the majority of host-specific mutations present at the beginning of this experiment were retained in the end-point populations and may have affected which new mutations were consequently fixed. This resulted in further divergence between the sequences despite a shared selective environment. Conclusions: The present experiment reinforces the idea that the answer to the question "How important is historical contingency in evolution?" strongly depends on the level of integration of the traits studied. A strong historical contingency was found for TEV genotype, whereas a weak effect of on phenotypic evolution was revealed. In an applied context, our results imply that viruses are not easily trapped into suboptimal phenotypes and that (re) emergence is not evolutionarily constrained. | es_ES |
dc.description.sponsorship | We thank Francisca de la Iglesia and Angels Prosper for excellent technical assistance and Mario A. Fares and anonymous reviewers for valuable comments. This research was supported by the Spanish Direccion General de Investigacion Cientifica y Tecnica grants BFU2009-06993 and BFU2012-30805 to SFE. SB was supported by the JAE-doc program from CSIC. | |
dc.language | Inglés | es_ES |
dc.publisher | BioMed Central | es_ES |
dc.relation.ispartof | BMC Evolutionary Biology | es_ES |
dc.rights | Reconocimiento (by) | es_ES |
dc.title | Genotypic but not phenotypic historical contingency revealed by viral experimental evolution | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1186/1471-2148-13-46 | |
dc.relation.projectID | info:eu-repo/grantAgreement/MICINN//BFU2009-06993/ES/Biologia Evolutiva Y De Sistemas De La Emergencia De Fitovirus De Rna/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//BFU2012-30805/ES/EVOLUTIONARY SYSTEMS VIROLOGY: EPISTASIS AND THE RUGGEDNESS OF ADAPTIVE LANDSCAPES, MUTATIONS IN REGULATORY SEQUENCES, AND THE HOST DETERMINANTS OF VIRAL FITNESS/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Instituto Universitario Mixto de Biología Molecular y Celular de Plantas - Institut Universitari Mixt de Biologia Molecular i Cel·lular de Plantes | es_ES |
dc.description.bibliographicCitation | Bedhomme, S.; Lafforgue, G.; Elena Fito, SF. (2013). Genotypic but not phenotypic historical contingency revealed by viral experimental evolution. BMC Evolutionary Biology. 13(46):1-13. https://doi.org/10.1186/1471-2148-13-46 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | http://dx.doi.org/10.1186/1471-2148-13-46 | es_ES |
dc.description.upvformatpinicio | 1 | es_ES |
dc.description.upvformatpfin | 13 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 13 | es_ES |
dc.description.issue | 46 | es_ES |
dc.relation.senia | 260371 | es_ES |
dc.identifier.pmid | 23421472 | en_EN |
dc.identifier.pmcid | PMC3598485 | en_EN |
dc.contributor.funder | Ministerio de Economía y Competitividad | |
dc.description.references | Travisano, M., Mongold, J., Bennett, A., & Lenski, R. (1995). Experimental tests of the roles of adaptation, chance, and history in evolution. Science, 267(5194), 87-90. doi:10.1126/science.7809610 | es_ES |
dc.description.references | Blount, Z. D., Borland, C. Z., & Lenski, R. E. (2008). Historical contingency and the evolution of a key innovation in an experimental population of Escherichia coli. Proceedings of the National Academy of Sciences, 105(23), 7899-7906. doi:10.1073/pnas.0803151105 | es_ES |
dc.description.references | Losos, J. B. (1998). Contingency and Determinism in Replicated Adaptive Radiations of Island Lizards. Science, 279(5359), 2115-2118. doi:10.1126/science.279.5359.2115 | es_ES |
dc.description.references | Langerhans, R. B., & DeWitt, T. J. (2004). Shared and Unique Features of Evolutionary Diversification. The American Naturalist, 164(3), 335-349. doi:10.1086/422857 | es_ES |
dc.description.references | Blackledge, T. A., & Gillespie, R. G. (2004). Convergent evolution of behavior in an adaptive radiation of Hawaiian web-building spiders. Proceedings of the National Academy of Sciences, 101(46), 16228-16233. doi:10.1073/pnas.0407395101 | es_ES |
dc.description.references | Langerhans, R. B., Gifford, M. E., & Joseph, E. O. (2007). ECOLOGICAL SPECIATION IN GAMBUSIA FISHES. Evolution, 61(9), 2056-2074. doi:10.1111/j.1558-5646.2007.00171.x | es_ES |
dc.description.references | EROUKHMANOFF, F., HARGEBY, A., ARNBERG, N. N., HELLGREN, O., Bensch, S., & SVENSSON, E. I. (2009). Parallelism and historical contingency during rapid ecotype divergence in an isopod. Journal of Evolutionary Biology, 22(5), 1098-1110. doi:10.1111/j.1420-9101.2009.01723.x | es_ES |
dc.description.references | Burch, C. L., & Chao, L. (2000). Evolvability of an RNA virus is determined by its mutational neighbourhood. Nature, 406(6796), 625-628. doi:10.1038/35020564 | es_ES |
dc.description.references | Blount, Z. D., Barrick, J. E., Davidson, C. J., & Lenski, R. E. (2012). Genomic analysis of a key innovation in an experimental Escherichia coli population. Nature, 489(7417), 513-518. doi:10.1038/nature11514 | es_ES |
dc.description.references | Kolbe, J. J., Leal, M., Schoener, T. W., Spiller, D. A., & Losos, J. B. (2012). Founder Effects Persist Despite Adaptive Differentiation: A Field Experiment with Lizards. Science, 335(6072), 1086-1089. doi:10.1126/science.1209566 | es_ES |
dc.description.references | Joshi, A., Castillo, R. B., & Mueller, L. D. (2003). The contribution of ancestry, chance, and past and ongoing selection to adaptive evolution. Journal of Genetics, 82(3), 147-162. doi:10.1007/bf02715815 | es_ES |
dc.description.references | Teotónio, H., Chelo, I. M., Bradić, M., Rose, M. R., & Long, A. D. (2009). Experimental evolution reveals natural selection on standing genetic variation. Nature Genetics, 41(2), 251-257. doi:10.1038/ng.289 | es_ES |
dc.description.references | Rokyta, D. R., Abdo, Z., & Wichman, H. A. (2009). The Genetics of Adaptation for Eight Microvirid Bacteriophages. Journal of Molecular Evolution, 69(3), 229-239. doi:10.1007/s00239-009-9267-9 | es_ES |
dc.description.references | Amoros-Moya, D., Bedhomme, S., Hermann, M., & Bravo, I. G. (2010). Evolution in Regulatory Regions Rapidly Compensates the Cost of Nonoptimal Codon Usage. Molecular Biology and Evolution, 27(9), 2141-2151. doi:10.1093/molbev/msq103 | es_ES |
dc.description.references | Barrick, J. E., Kauth, M. R., Strelioff, C. C., & Lenski, R. E. (2010). Escherichia coli rpoB Mutants Have Increased Evolvability in Proportion to Their Fitness Defects. Molecular Biology and Evolution, 27(6), 1338-1347. doi:10.1093/molbev/msq024 | es_ES |
dc.description.references | Hall, A. R., Griffiths, V. F., MacLean, R. C., & Colegrave, N. (2009). Mutational neighbourhood and mutation supply rate constrain adaptation in Pseudomonas aeruginosa. Proceedings of the Royal Society B: Biological Sciences, 277(1681), 643-650. doi:10.1098/rspb.2009.1630 | es_ES |
dc.description.references | Herrera, M., Grande-Perez, A., Perales, C., & Domingo, E. (2008). Persistence of foot-and-mouth disease virus in cell culture revisited: implications for contingency in evolution. Journal of General Virology, 89(1), 232-244. doi:10.1099/vir.0.83312-0 | es_ES |
dc.description.references | Poulicard, N., Pinel-Galzi, A., Traoré, O., Vignols, F., Ghesquière, A., Konaté, G., … Fargette, D. (2012). Historical Contingencies Modulate the Adaptability of Rice Yellow Mottle Virus. PLoS Pathogens, 8(1), e1002482. doi:10.1371/journal.ppat.1002482 | es_ES |
dc.description.references | Lalić, J., & Elena, S. F. (2012). Magnitude and sign epistasis among deleterious mutations in a positive-sense plant RNA virus. Heredity, 109(2), 71-77. doi:10.1038/hdy.2012.15 | es_ES |
dc.description.references | Poelwijk, F. J., Tănase-Nicola, S., Kiviet, D. J., & Tans, S. J. (2011). Reciprocal sign epistasis is a necessary condition for multi-peaked fitness landscapes. Journal of Theoretical Biology, 272(1), 141-144. doi:10.1016/j.jtbi.2010.12.015 | es_ES |
dc.description.references | Lalic, J., & Elena, S. F. (2012). Epistasis between mutations is host-dependent for an RNA virus. Biology Letters, 9(1), 20120396-20120396. doi:10.1098/rsbl.2012.0396 | es_ES |
dc.description.references | Tamura, K., Peterson, D., Peterson, N., Stecher, G., Nei, M., & Kumar, S. (2011). MEGA5: Molecular Evolutionary Genetics Analysis Using Maximum Likelihood, Evolutionary Distance, and Maximum Parsimony Methods. Molecular Biology and Evolution, 28(10), 2731-2739. doi:10.1093/molbev/msr121 | es_ES |
dc.description.references | Earl, D. J., & Deem, M. W. (2004). Evolvability is a selectable trait. Proceedings of the National Academy of Sciences, 101(32), 11531-11536. doi:10.1073/pnas.0404656101 | es_ES |
dc.description.references | Palmer, M. E., & Feldman, M. W. (2011). SPATIAL ENVIRONMENTAL VARIATION CAN SELECT FOR EVOLVABILITY. Evolution, 65(8), 2345-2356. doi:10.1111/j.1558-5646.2011.01283.x | es_ES |
dc.description.references | Borman, A. M., Paulous, S., & Clavel, F. (1996). Resistance of human immunodeficiency virus type 1 to protease inhibitors: selection of resistance mutations in the presence and absence of the drug. Journal of General Virology, 77(3), 419-426. doi:10.1099/0022-1317-77-3-419 | es_ES |
dc.description.references | Schrag, S. J., Perrot, V., & Levin, B. R. (1997). Adaptation to the fitness costs of antibiotic resistance in Escherichia coli. Proceedings of the Royal Society of London. Series B: Biological Sciences, 264(1386), 1287-1291. doi:10.1098/rspb.1997.0178 | es_ES |
dc.description.references | Maisnier-Patin, S., & Andersson, D. I. (2004). Adaptation to the deleterious effects of antimicrobial drug resistance mutations by compensatory evolution. Research in Microbiology, 155(5), 360-369. doi:10.1016/j.resmic.2004.01.019 | es_ES |
dc.description.references | Teotónio, H., & Rose, M. R. (2001). PERSPECTIVE: REVERSE EVOLUTION. Evolution, 55(4), 653. doi:10.1554/0014-3820(2001)055[0653:pre]2.0.co;2 | es_ES |
dc.description.references | Lalić, J., Cuevas, J. M., & Elena, S. F. (2011). Effect of Host Species on the Distribution of Mutational Fitness Effects for an RNA Virus. PLoS Genetics, 7(11), e1002378. doi:10.1371/journal.pgen.1002378 | es_ES |
dc.description.references | Van Nimwegen, E., Crutchfield, J. P., & Huynen, M. (1999). Neutral evolution of mutational robustness. Proceedings of the National Academy of Sciences, 96(17), 9716-9720. doi:10.1073/pnas.96.17.9716 | es_ES |
dc.description.references | Koelle, K., Cobey, S., Grenfell, B., & Pascual, M. (2006). Epochal Evolution Shapes the Phylodynamics of Interpandemic Influenza A (H3N2) in Humans. Science, 314(5807), 1898-1903. doi:10.1126/science.1132745 | es_ES |
dc.description.references | Van Nimwegen, E. (2006). Influenza Escapes Immunity Along Neutral Networks. Science, 314(5807), 1884-1886. doi:10.1126/science.1137300 | es_ES |
dc.description.references | Colegrave, N., & Buckling, A. (2005). Microbial experiments on adaptive landscapes. BioEssays, 27(11), 1167-1173. doi:10.1002/bies.20292 | es_ES |
dc.description.references | Riechmann, J. L., Lain, S., & Garcia, J. A. (1992). Highlights and prospects of potyvirus molecular biology. Journal of General Virology, 73(1), 1-16. doi:10.1099/0022-1317-73-1-1 | es_ES |
dc.description.references | Chung, B. Y.-W., Miller, W. A., Atkins, J. F., & Firth, A. E. (2008). An overlapping essential gene in the Potyviridae. Proceedings of the National Academy of Sciences, 105(15), 5897-5902. doi:10.1073/pnas.0800468105 | es_ES |
dc.description.references | Tromas, N., & Elena, S. F. (2010). The Rate and Spectrum of Spontaneous Mutations in a Plant RNA Virus. Genetics, 185(3), 983-989. doi:10.1534/genetics.110.115915 | es_ES |
dc.description.references | Bedoya, L. C., & Daròs, J.-A. (2010). Stability of Tobacco etch virus infectious clones in plasmid vectors. Virus Research, 149(2), 234-240. doi:10.1016/j.virusres.2010.02.004 | es_ES |
dc.description.references | Shaner, G., Stromberg, E. L., Lacy, G. H., Barker, K. R., & Pirone, T. P. (1992). Nomenclature and Concepts of Pathogenicity and Virulence. Annual Review of Phytopathology, 30(1), 47-66. doi:10.1146/annurev.py.30.090192.000403 | es_ES |
dc.description.references | SACRISTÁN, S., & GARCÍA‐ARENAL, F. (2008). The evolution of virulence and pathogenicity in plant pathogen populations. Molecular Plant Pathology, 9(3), 369-384. doi:10.1111/j.1364-3703.2007.00460.x | es_ES |