- -

Genotypic but not phenotypic historical contingency revealed by viral experimental evolution

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Genotypic but not phenotypic historical contingency revealed by viral experimental evolution

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Bedhomme, Stephanie es_ES
dc.contributor.author Lafforgue, Guillaume es_ES
dc.contributor.author Elena Fito, Santiago Fco
dc.date.accessioned 2016-05-12T10:50:37Z
dc.date.available 2016-05-12T10:50:37Z
dc.date.issued 2013-02-19
dc.identifier.issn 1471-2148
dc.identifier.uri http://hdl.handle.net/10251/63965
dc.description.abstract [EN] Background: The importance of historical contingency in determining the potential of viral populations to evolve has been largely unappreciated. Identifying the constraints imposed by past adaptations is, however, of importance for understanding many questions in evolutionary biology, such as the evolution of host usage dynamics by multi-host viruses or the emergence of escape mutants that persist in the absence of antiviral treatments. To address this issue, we undertook an experimental approach in which sixty lineages of Tobacco etch potyvirus that differ in their past evolutionary history and degree of adaptation to Nicotiana tabacum were allowed to adapt to this host for 15 rounds of within host multiplication and transfer. We thereafter evaluated the degree of adaptation to the new host as well as to the original ones and characterized the consensus sequence of each lineage. Results: We found that past evolutionary history did not determine the phenotypic outcome of this common host evolution phase, and that the signal of local adaptation to past hosts had largely disappeared. By contrast, evolutionary history left footprints at the genotypic level, since the majority of host-specific mutations present at the beginning of this experiment were retained in the end-point populations and may have affected which new mutations were consequently fixed. This resulted in further divergence between the sequences despite a shared selective environment. Conclusions: The present experiment reinforces the idea that the answer to the question "How important is historical contingency in evolution?" strongly depends on the level of integration of the traits studied. A strong historical contingency was found for TEV genotype, whereas a weak effect of on phenotypic evolution was revealed. In an applied context, our results imply that viruses are not easily trapped into suboptimal phenotypes and that (re) emergence is not evolutionarily constrained. es_ES
dc.description.sponsorship We thank Francisca de la Iglesia and Angels Prosper for excellent technical assistance and Mario A. Fares and anonymous reviewers for valuable comments. This research was supported by the Spanish Direccion General de Investigacion Cientifica y Tecnica grants BFU2009-06993 and BFU2012-30805 to SFE. SB was supported by the JAE-doc program from CSIC.
dc.language Inglés es_ES
dc.publisher BioMed Central es_ES
dc.relation.ispartof BMC Evolutionary Biology es_ES
dc.rights Reconocimiento (by) es_ES
dc.title Genotypic but not phenotypic historical contingency revealed by viral experimental evolution es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1186/1471-2148-13-46
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//BFU2009-06993/ES/Biologia Evolutiva Y De Sistemas De La Emergencia De Fitovirus De Rna/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//BFU2012-30805/ES/EVOLUTIONARY SYSTEMS VIROLOGY: EPISTASIS AND THE RUGGEDNESS OF ADAPTIVE LANDSCAPES, MUTATIONS IN REGULATORY SEQUENCES, AND THE HOST DETERMINANTS OF VIRAL FITNESS/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario Mixto de Biología Molecular y Celular de Plantas - Institut Universitari Mixt de Biologia Molecular i Cel·lular de Plantes es_ES
dc.description.bibliographicCitation Bedhomme, S.; Lafforgue, G.; Elena Fito, SF. (2013). Genotypic but not phenotypic historical contingency revealed by viral experimental evolution. BMC Evolutionary Biology. 13(46):1-13. https://doi.org/10.1186/1471-2148-13-46 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/10.1186/1471-2148-13-46 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 13 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 13 es_ES
dc.description.issue 46 es_ES
dc.relation.senia 260371 es_ES
dc.identifier.pmid 23421472 en_EN
dc.identifier.pmcid PMC3598485 en_EN
dc.contributor.funder Ministerio de Economía y Competitividad
dc.description.references Travisano, M., Mongold, J., Bennett, A., & Lenski, R. (1995). Experimental tests of the roles of adaptation, chance, and history in evolution. Science, 267(5194), 87-90. doi:10.1126/science.7809610 es_ES
dc.description.references Blount, Z. D., Borland, C. Z., & Lenski, R. E. (2008). Historical contingency and the evolution of a key innovation in an experimental population of Escherichia coli. Proceedings of the National Academy of Sciences, 105(23), 7899-7906. doi:10.1073/pnas.0803151105 es_ES
dc.description.references Losos, J. B. (1998). Contingency and Determinism in Replicated Adaptive Radiations of Island Lizards. Science, 279(5359), 2115-2118. doi:10.1126/science.279.5359.2115 es_ES
dc.description.references Langerhans, R. B., & DeWitt, T. J. (2004). Shared and Unique Features of Evolutionary Diversification. The American Naturalist, 164(3), 335-349. doi:10.1086/422857 es_ES
dc.description.references Blackledge, T. A., & Gillespie, R. G. (2004). Convergent evolution of behavior in an adaptive radiation of Hawaiian web-building spiders. Proceedings of the National Academy of Sciences, 101(46), 16228-16233. doi:10.1073/pnas.0407395101 es_ES
dc.description.references Langerhans, R. B., Gifford, M. E., & Joseph, E. O. (2007). ECOLOGICAL SPECIATION IN GAMBUSIA FISHES. Evolution, 61(9), 2056-2074. doi:10.1111/j.1558-5646.2007.00171.x es_ES
dc.description.references EROUKHMANOFF, F., HARGEBY, A., ARNBERG, N. N., HELLGREN, O., Bensch, S., & SVENSSON, E. I. (2009). Parallelism and historical contingency during rapid ecotype divergence in an isopod. Journal of Evolutionary Biology, 22(5), 1098-1110. doi:10.1111/j.1420-9101.2009.01723.x es_ES
dc.description.references Burch, C. L., & Chao, L. (2000). Evolvability of an RNA virus is determined by its mutational neighbourhood. Nature, 406(6796), 625-628. doi:10.1038/35020564 es_ES
dc.description.references Blount, Z. D., Barrick, J. E., Davidson, C. J., & Lenski, R. E. (2012). Genomic analysis of a key innovation in an experimental Escherichia coli population. Nature, 489(7417), 513-518. doi:10.1038/nature11514 es_ES
dc.description.references Kolbe, J. J., Leal, M., Schoener, T. W., Spiller, D. A., & Losos, J. B. (2012). Founder Effects Persist Despite Adaptive Differentiation: A Field Experiment with Lizards. Science, 335(6072), 1086-1089. doi:10.1126/science.1209566 es_ES
dc.description.references Joshi, A., Castillo, R. B., & Mueller, L. D. (2003). The contribution of ancestry, chance, and past and ongoing selection to adaptive evolution. Journal of Genetics, 82(3), 147-162. doi:10.1007/bf02715815 es_ES
dc.description.references Teotónio, H., Chelo, I. M., Bradić, M., Rose, M. R., & Long, A. D. (2009). Experimental evolution reveals natural selection on standing genetic variation. Nature Genetics, 41(2), 251-257. doi:10.1038/ng.289 es_ES
dc.description.references Rokyta, D. R., Abdo, Z., & Wichman, H. A. (2009). The Genetics of Adaptation for Eight Microvirid Bacteriophages. Journal of Molecular Evolution, 69(3), 229-239. doi:10.1007/s00239-009-9267-9 es_ES
dc.description.references Amoros-Moya, D., Bedhomme, S., Hermann, M., & Bravo, I. G. (2010). Evolution in Regulatory Regions Rapidly Compensates the Cost of Nonoptimal Codon Usage. Molecular Biology and Evolution, 27(9), 2141-2151. doi:10.1093/molbev/msq103 es_ES
dc.description.references Barrick, J. E., Kauth, M. R., Strelioff, C. C., & Lenski, R. E. (2010). Escherichia coli rpoB Mutants Have Increased Evolvability in Proportion to Their Fitness Defects. Molecular Biology and Evolution, 27(6), 1338-1347. doi:10.1093/molbev/msq024 es_ES
dc.description.references Hall, A. R., Griffiths, V. F., MacLean, R. C., & Colegrave, N. (2009). Mutational neighbourhood and mutation supply rate constrain adaptation in Pseudomonas aeruginosa. Proceedings of the Royal Society B: Biological Sciences, 277(1681), 643-650. doi:10.1098/rspb.2009.1630 es_ES
dc.description.references Herrera, M., Grande-Perez, A., Perales, C., & Domingo, E. (2008). Persistence of foot-and-mouth disease virus in cell culture revisited: implications for contingency in evolution. Journal of General Virology, 89(1), 232-244. doi:10.1099/vir.0.83312-0 es_ES
dc.description.references Poulicard, N., Pinel-Galzi, A., Traoré, O., Vignols, F., Ghesquière, A., Konaté, G., … Fargette, D. (2012). Historical Contingencies Modulate the Adaptability of Rice Yellow Mottle Virus. PLoS Pathogens, 8(1), e1002482. doi:10.1371/journal.ppat.1002482 es_ES
dc.description.references Lalić, J., & Elena, S. F. (2012). Magnitude and sign epistasis among deleterious mutations in a positive-sense plant RNA virus. Heredity, 109(2), 71-77. doi:10.1038/hdy.2012.15 es_ES
dc.description.references Poelwijk, F. J., Tănase-Nicola, S., Kiviet, D. J., & Tans, S. J. (2011). Reciprocal sign epistasis is a necessary condition for multi-peaked fitness landscapes. Journal of Theoretical Biology, 272(1), 141-144. doi:10.1016/j.jtbi.2010.12.015 es_ES
dc.description.references Lalic, J., & Elena, S. F. (2012). Epistasis between mutations is host-dependent for an RNA virus. Biology Letters, 9(1), 20120396-20120396. doi:10.1098/rsbl.2012.0396 es_ES
dc.description.references Tamura, K., Peterson, D., Peterson, N., Stecher, G., Nei, M., & Kumar, S. (2011). MEGA5: Molecular Evolutionary Genetics Analysis Using Maximum Likelihood, Evolutionary Distance, and Maximum Parsimony Methods. Molecular Biology and Evolution, 28(10), 2731-2739. doi:10.1093/molbev/msr121 es_ES
dc.description.references Earl, D. J., & Deem, M. W. (2004). Evolvability is a selectable trait. Proceedings of the National Academy of Sciences, 101(32), 11531-11536. doi:10.1073/pnas.0404656101 es_ES
dc.description.references Palmer, M. E., & Feldman, M. W. (2011). SPATIAL ENVIRONMENTAL VARIATION CAN SELECT FOR EVOLVABILITY. Evolution, 65(8), 2345-2356. doi:10.1111/j.1558-5646.2011.01283.x es_ES
dc.description.references Borman, A. M., Paulous, S., & Clavel, F. (1996). Resistance of human immunodeficiency virus type 1 to protease inhibitors: selection of resistance mutations in the presence and absence of the drug. Journal of General Virology, 77(3), 419-426. doi:10.1099/0022-1317-77-3-419 es_ES
dc.description.references Schrag, S. J., Perrot, V., & Levin, B. R. (1997). Adaptation to the fitness costs of antibiotic resistance in Escherichia coli. Proceedings of the Royal Society of London. Series B: Biological Sciences, 264(1386), 1287-1291. doi:10.1098/rspb.1997.0178 es_ES
dc.description.references Maisnier-Patin, S., & Andersson, D. I. (2004). Adaptation to the deleterious effects of antimicrobial drug resistance mutations by compensatory evolution. Research in Microbiology, 155(5), 360-369. doi:10.1016/j.resmic.2004.01.019 es_ES
dc.description.references Teotónio, H., & Rose, M. R. (2001). PERSPECTIVE: REVERSE EVOLUTION. Evolution, 55(4), 653. doi:10.1554/0014-3820(2001)055[0653:pre]2.0.co;2 es_ES
dc.description.references Lalić, J., Cuevas, J. M., & Elena, S. F. (2011). Effect of Host Species on the Distribution of Mutational Fitness Effects for an RNA Virus. PLoS Genetics, 7(11), e1002378. doi:10.1371/journal.pgen.1002378 es_ES
dc.description.references Van Nimwegen, E., Crutchfield, J. P., & Huynen, M. (1999). Neutral evolution of mutational robustness. Proceedings of the National Academy of Sciences, 96(17), 9716-9720. doi:10.1073/pnas.96.17.9716 es_ES
dc.description.references Koelle, K., Cobey, S., Grenfell, B., & Pascual, M. (2006). Epochal Evolution Shapes the Phylodynamics of Interpandemic Influenza A (H3N2) in Humans. Science, 314(5807), 1898-1903. doi:10.1126/science.1132745 es_ES
dc.description.references Van Nimwegen, E. (2006). Influenza Escapes Immunity Along Neutral Networks. Science, 314(5807), 1884-1886. doi:10.1126/science.1137300 es_ES
dc.description.references Colegrave, N., & Buckling, A. (2005). Microbial experiments on adaptive landscapes. BioEssays, 27(11), 1167-1173. doi:10.1002/bies.20292 es_ES
dc.description.references Riechmann, J. L., Lain, S., & Garcia, J. A. (1992). Highlights and prospects of potyvirus molecular biology. Journal of General Virology, 73(1), 1-16. doi:10.1099/0022-1317-73-1-1 es_ES
dc.description.references Chung, B. Y.-W., Miller, W. A., Atkins, J. F., & Firth, A. E. (2008). An overlapping essential gene in the Potyviridae. Proceedings of the National Academy of Sciences, 105(15), 5897-5902. doi:10.1073/pnas.0800468105 es_ES
dc.description.references Tromas, N., & Elena, S. F. (2010). The Rate and Spectrum of Spontaneous Mutations in a Plant RNA Virus. Genetics, 185(3), 983-989. doi:10.1534/genetics.110.115915 es_ES
dc.description.references Bedoya, L. C., & Daròs, J.-A. (2010). Stability of Tobacco etch virus infectious clones in plasmid vectors. Virus Research, 149(2), 234-240. doi:10.1016/j.virusres.2010.02.004 es_ES
dc.description.references Shaner, G., Stromberg, E. L., Lacy, G. H., Barker, K. R., & Pirone, T. P. (1992). Nomenclature and Concepts of Pathogenicity and Virulence. Annual Review of Phytopathology, 30(1), 47-66. doi:10.1146/annurev.py.30.090192.000403 es_ES
dc.description.references SACRISTÁN, S., & GARCÍA‐ARENAL, F. (2008). The evolution of virulence and pathogenicity in plant pathogen populations. Molecular Plant Pathology, 9(3), 369-384. doi:10.1111/j.1364-3703.2007.00460.x es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem