- -

Intra-specific variability and biological relevance of P3N-PIPO protein length in potyviruses

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Intra-specific variability and biological relevance of P3N-PIPO protein length in potyviruses

Mostrar el registro completo del ítem

Hillung, J.; Elena Fito, SF.; Cuevas Torrijos, JM. (2013). Intra-specific variability and biological relevance of P3N-PIPO protein length in potyviruses. BMC Evolutionary Biology. 13(249):1-10. https://doi.org/10.1186/1471-2148-13-249

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/63967

Ficheros en el ítem

Metadatos del ítem

Título: Intra-specific variability and biological relevance of P3N-PIPO protein length in potyviruses
Autor: Hillung, Julia Elena Fito, Santiago Fco Cuevas Torrijos, Jose Manuel
Entidad UPV: Universitat Politècnica de València. Instituto Universitario Mixto de Biología Molecular y Celular de Plantas - Institut Universitari Mixt de Biologia Molecular i Cel·lular de Plantes
Fecha difusión:
Resumen:
Background: Pipo was recently described as a new ORF encoded within the genome of the Potyviridae family members (PNAS 105: 5897-5902, 2008). It is embedded within the P3 cistron and is translated in the +2 reading frame ...[+]
Palabras clave: Bayesian phylogenetic methods , Host-range determinants , Molecular evolution , Potyvirus , Virus evolution , Virus fitness components
Derechos de uso: Reconocimiento (by)
Fuente:
BMC Evolutionary Biology. (issn: 1471-2148 )
DOI: 10.1186/1471-2148-13-249
Editorial:
BioMed Central
Versión del editor: http://dx.doi.org/10.1186/1471-2148-13-249
Código del Proyecto:
info:eu-repo/grantAgreement/MINECO//BFU2012-30805/ES/EVOLUTIONARY SYSTEMS VIROLOGY: EPISTASIS AND THE RUGGEDNESS OF ADAPTIVE LANDSCAPES, MUTATIONS IN REGULATORY SEQUENCES, AND THE HOST DETERMINANTS OF VIRAL FITNESS/
Agradecimientos:
We thank Jose A. Daros for providing the TuMV-GFP infectious clone, Mario A. Fares and Guillaume Lafforgue for fruitful discussion, Guillermo Rodrigo for assistance with MATLAB and for critically reading of the manuscript, ...[+]
Tipo: Artículo

References

Riechmann, J. L., Lain, S., & Garcia, J. A. (1992). Highlights and prospects of potyvirus molecular biology. Journal of General Virology, 73(1), 1-16. doi:10.1099/0022-1317-73-1-1

Green, K. Y., Ando, T., Balayan, M. S., Berke, T., Clarke, I. N., Estes, M. K., … Thiel, H. (2000). Taxonomy of the Caliciviruses. The Journal of Infectious Diseases, 181(s2), S322-S330. doi:10.1086/315591

Van der Wilk, F., Dullemans, A. M., Verbeek, M., & Van den Heuvel, J. F. J. M. (1997). Nucleotide Sequence and Genomic Organization of Acyrthosiphon Pisum Virus. Virology, 238(2), 353-362. doi:10.1006/viro.1997.8835 [+]
Riechmann, J. L., Lain, S., & Garcia, J. A. (1992). Highlights and prospects of potyvirus molecular biology. Journal of General Virology, 73(1), 1-16. doi:10.1099/0022-1317-73-1-1

Green, K. Y., Ando, T., Balayan, M. S., Berke, T., Clarke, I. N., Estes, M. K., … Thiel, H. (2000). Taxonomy of the Caliciviruses. The Journal of Infectious Diseases, 181(s2), S322-S330. doi:10.1086/315591

Van der Wilk, F., Dullemans, A. M., Verbeek, M., & Van den Heuvel, J. F. J. M. (1997). Nucleotide Sequence and Genomic Organization of Acyrthosiphon Pisum Virus. Virology, 238(2), 353-362. doi:10.1006/viro.1997.8835

Urcuqui-Inchima, S., Haenni, A.-L., & Bernardi, F. (2001). Potyvirus proteins: a wealth of functions. Virus Research, 74(1-2), 157-175. doi:10.1016/s0168-1702(01)00220-9

Chung, B. Y.-W., Miller, W. A., Atkins, J. F., & Firth, A. E. (2008). An overlapping essential gene in the Potyviridae. Proceedings of the National Academy of Sciences, 105(15), 5897-5902. doi:10.1073/pnas.0800468105

Wei, T., Zhang, C., Hong, J., Xiong, R., Kasschau, K. D., Zhou, X., … Wang, A. (2010). Formation of Complexes at Plasmodesmata for Potyvirus Intercellular Movement Is Mediated by the Viral Protein P3N-PIPO. PLoS Pathogens, 6(6), e1000962. doi:10.1371/journal.ppat.1000962

Wen, R.-H., & Hajimorad, M. R. (2010). Mutational analysis of the putative pipo of soybean mosaic virus suggests disruption of PIPO protein impedes movement. Virology, 400(1), 1-7. doi:10.1016/j.virol.2010.01.022

Vijayapalani, P., Maeshima, M., Nagasaki-Takekuchi, N., & Miller, W. A. (2012). Interaction of the Trans-Frame Potyvirus Protein P3N-PIPO with Host Protein PCaP1 Facilitates Potyvirus Movement. PLoS Pathogens, 8(4), e1002639. doi:10.1371/journal.ppat.1002639

Lin, L., Luo, Z., Yan, F., Lu, Y., Zheng, H., & Chen, J. (2011). Interaction between potyvirus P3 and ribulose-1,5-bisphosphate carboxylase/oxygenase (RubisCO) of host plants. Virus Genes, 43(1), 90-92. doi:10.1007/s11262-011-0596-6

Choi, S. H., Hagiwara-Komoda, Y., Nakahara, K. S., Atsumi, G., Shimada, R., Hisa, Y., … Uyeda, I. (2013). Quantitative and Qualitative Involvement of P3N-PIPO in Overcoming Recessive Resistance against Clover Yellow Vein Virus in Pea Carrying the cyv1 Gene. Journal of Virology, 87(13), 7326-7337. doi:10.1128/jvi.00065-13

Cuevas, J. M., Delaunay, A., Visser, J. C., Bellstedt, D. U., Jacquot, E., & Elena, S. F. (2012). Phylogeography and Molecular Evolution of Potato virus Y. PLoS ONE, 7(5), e37853. doi:10.1371/journal.pone.0037853

Edgar, R. C. (2004). MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Research, 32(5), 1792-1797. doi:10.1093/nar/gkh340

Tamura, K., Peterson, D., Peterson, N., Stecher, G., Nei, M., & Kumar, S. (2011). MEGA5: Molecular Evolutionary Genetics Analysis Using Maximum Likelihood, Evolutionary Distance, and Maximum Parsimony Methods. Molecular Biology and Evolution, 28(10), 2731-2739. doi:10.1093/molbev/msr121

Martin, D. P., Lemey, P., Lott, M., Moulton, V., Posada, D., & Lefeuvre, P. (2010). RDP3: a flexible and fast computer program for analyzing recombination. Bioinformatics, 26(19), 2462-2463. doi:10.1093/bioinformatics/btq467

Ilardi, V., & Nicola-Negri, E. D. (2011). Genetically engineered resistance to Plum pox virus infection in herbaceous and stone fruit hosts. GM Crops, 2(1), 24-33. doi:10.4161/gmcr.2.1.15096

Schubert, J., Fomitcheva, V., & Sztangret-Wiśniewska, J. (2007). Differentiation of Potato virus Y strains using improved sets of diagnostic PCR-primers. Journal of Virological Methods, 140(1-2), 66-74. doi:10.1016/j.jviromet.2006.10.017

Ohshima, K., Tomitaka, Y., Wood, J. T., Minematsu, Y., Kajiyama, H., Tomimura, K., & Gibbs, A. J. (2007). Patterns of recombination in turnip mosaic virus genomic sequences indicate hotspots of recombination. Journal of General Virology, 88(1), 298-315. doi:10.1099/vir.0.82335-0

Kosakovsky Pond, S. L., Frost, S. D. W., Grossman, Z., Gravenor, M. B., Richman, D. D., & Brown, A. J. L. (2006). Adaptation to Different Human Populations by HIV-1 Revealed by Codon-Based Analyses. PLoS Computational Biology, 2(6), e62. doi:10.1371/journal.pcbi.0020062

Kosakovsky Pond, S. L., & Frost, S. D. W. (2005). Not So Different After All: A Comparison of Methods for Detecting Amino Acid Sites Under Selection. Molecular Biology and Evolution, 22(5), 1208-1222. doi:10.1093/molbev/msi105

Delport, W., Poon, A. F. Y., Frost, S. D. W., & Kosakovsky Pond, S. L. (2010). Datamonkey 2010: a suite of phylogenetic analysis tools for evolutionary biology. Bioinformatics, 26(19), 2455-2457. doi:10.1093/bioinformatics/btq429

Drummond, A. J., & Rambaut, A. (2007). BEAST: Bayesian evolutionary analysis by sampling trees. BMC Evolutionary Biology, 7(1), 214. doi:10.1186/1471-2148-7-214

Parker, J., Rambaut, A., & Pybus, O. G. (2008). Correlating viral phenotypes with phylogeny: Accounting for phylogenetic uncertainty. Infection, Genetics and Evolution, 8(3), 239-246. doi:10.1016/j.meegid.2007.08.001

Wang, T. H., Donaldson, Y. K., Brettle, R. P., Bell, J. E., & Simmonds, P. (2001). Identification of Shared Populations of Human Immunodeficiency Virus Type 1 Infecting Microglia and Tissue Macrophages outside the Central Nervous System. Journal of Virology, 75(23), 11686-11699. doi:10.1128/jvi.75.23.11686-11699.2001

Lafforgue, G., Tromas, N., Elena, S. F., & Zwart, M. P. (2012). Dynamics of the Establishment of Systemic Potyvirus Infection: Independent yet Cumulative Action of Primary Infection Sites. Journal of Virology, 86(23), 12912-12922. doi:10.1128/jvi.02207-12

Gibbs, A. J., Ohshima, K., Phillips, M. J., & Gibbs, M. J. (2008). The Prehistory of Potyviruses: Their Initial Radiation Was during the Dawn of Agriculture. PLoS ONE, 3(6), e2523. doi:10.1371/journal.pone.0002523

Glasa, M., Malinowski, T., Predajňa, L., Pupola, N., Dekena, D., Michalczuk, L., & Candresse, T. (2011). Sequence Variability, Recombination Analysis, and Specific Detection of the W Strain ofPlum pox virus. Phytopathology, 101(8), 980-985. doi:10.1094/phyto-12-10-0334

Zwart, M. P., Daròs, J.-A., & Elena, S. F. (2011). One Is Enough: In Vivo Effective Population Size Is Dose-Dependent for a Plant RNA Virus. PLoS Pathogens, 7(7), e1002122. doi:10.1371/journal.ppat.1002122

Zwart, M. P., Daròs, J.-A., & Elena, S. F. (2012). Effects of Potyvirus Effective Population Size in Inoculated Leaves on Viral Accumulation and the Onset of Symptoms. Journal of Virology, 86(18), 9737-9747. doi:10.1128/jvi.00909-12

Agudelo-Romero, P., Carbonell, P., Perez-Amador, M. A., & Elena, S. F. (2008). Virus Adaptation by Manipulation of Host’s Gene Expression. PLoS ONE, 3(6), e2397. doi:10.1371/journal.pone.0002397

Jenner, C. E., Wang, X., Tomimura, K., Ohshima, K., Ponz, F., & Walsh, J. A. (2003). The Dual Role of the Potyvirus P3 Protein ofTurnip mosaic virusas a Symptom and Avirulence Determinant in Brassicas. Molecular Plant-Microbe Interactions, 16(9), 777-784. doi:10.1094/mpmi.2003.16.9.777

Suehiro, N. (2004). An important determinant of the ability of Turnip mosaic virus to infect Brassica spp. and/or Raphanus sativus is in its P3 protein. Journal of General Virology, 85(7), 2087-2098. doi:10.1099/vir.0.79825-0

Kim, B. M., Suehiro, N., Natsuaki, T., Inukai, T., & Masuta, C. (2010). The P3 Protein ofTurnip mosaic virusCan Alone Induce Hypersensitive Response-Like Cell Death inArabidopsis thalianaCarryingTuNI. Molecular Plant-Microbe Interactions, 23(2), 144-152. doi:10.1094/mpmi-23-2-0144

Hjulsager, C. K., Olsen, B. S., Jensen, D. M. K., Cordea, M. I., Krath, B. N., Johansen, I. E., & Lund, O. S. (2006). Multiple determinants in the coding region of Pea seed-borne mosaic virus P3 are involved in virulence against sbm-2 resistance. Virology, 355(1), 52-61. doi:10.1016/j.virol.2006.07.016

Desbiez, C., Gal-On, A., Girard, M., Wipf-Scheibel, C., & Lecoq, H. (2003). Increase inZucchini yellow mosaic virusSymptom Severity in Tolerant Zucchini Cultivars Is Related to a Point Mutation in P3 Protein and Is Associated with a Loss of Relative Fitness on Susceptible Plants. Phytopathology, 93(12), 1478-1484. doi:10.1094/phyto.2003.93.12.1478

Glasa, M., Svoboda, J., & Nováková, S. (2007). Analysis of the molecular and biological variability of Zucchini yellow mosaic virus isolates from Slovakia and Czech Republic. Virus Genes, 35(2), 415-421. doi:10.1007/s11262-007-0101-4

Eggenberger, A. L., Hajimorad, M. R., & Hill, J. H. (2008). Gain of Virulence onRsv1-Genotype Soybean by an AvirulentSoybean mosaic virusRequires Concurrent Mutations in Both P3 and HC-Pro. Molecular Plant-Microbe Interactions, 21(7), 931-936. doi:10.1094/mpmi-21-7-0931

WEN, R.-H., MAROOF, M. A. S., & HAJIMORAD, M. R. (2011). Amino acid changes in P3, and not the overlapping pipo-encoded protein, determine virulence of Soybean mosaic virus on functionally immune Rsv1-genotype soybean. Molecular Plant Pathology, 12(8), 799-807. doi:10.1111/j.1364-3703.2011.00714.x

Tan, Z. (2005). Mutations in Turnip mosaic virus genomes that have adapted to Raphanus sativus. Journal of General Virology, 86(2), 501-510. doi:10.1099/vir.0.80540-0

Choi, I.-R. (2005). An internal RNA element in the P3 cistron of Wheat streak mosaic virus revealed by synonymous mutations that affect both movement and replication. Journal of General Virology, 86(9), 2605-2614. doi:10.1099/vir.0.81081-0

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem