- -

Application of robust estimation methods to simple models of nucleon separation energies

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Application of robust estimation methods to simple models of nucleon separation energies

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Baselga Moreno, Sergio es_ES
dc.date.accessioned 2016-05-12T14:17:25Z
dc.date.available 2016-05-12T14:17:25Z
dc.date.issued 2015-08-10
dc.identifier.issn 0217-7323
dc.identifier.uri http://hdl.handle.net/10251/63984
dc.description.abstract Some works have recently shown the usefulness of simple models of nucleon separation energies in terms of neutron and proton numbers. However, the customary use of least squares in the process of parameter estimation turns out to be extremely sensible to the accuracy of the model and the extent and quality of data (e.g. highly vulnerable to the sample size or the possible existence of undesired errors in the experimental values). We will show how robust estimation by global optimization instead of least squares estimation improves on both the stability of the estimated parameters and the extrapolation to unknown energies. Comparison against recently determined experimental data will show a level of agreement comparable to the predictions made by the best and much more complex models. es_ES
dc.language Inglés es_ES
dc.publisher World Scientific Publishing es_ES
dc.relation.ispartof Modern Physics Letters A es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Separation energy es_ES
dc.subject Nuclear structure models es_ES
dc.subject Robust estimation es_ES
dc.subject Global optimization es_ES
dc.subject.classification INGENIERIA CARTOGRAFICA, GEODESIA Y FOTOGRAMETRIA es_ES
dc.title Application of robust estimation methods to simple models of nucleon separation energies es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1142/S0217732315501217
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Cartográfica Geodesia y Fotogrametría - Departament d'Enginyeria Cartogràfica, Geodèsia i Fotogrametria es_ES
dc.description.bibliographicCitation Baselga Moreno, S. (2015). Application of robust estimation methods to simple models of nucleon separation energies. Modern Physics Letters A. 30(24):1550121-1-1550121-12. doi:10.1142/S0217732315501217 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/10.1142/S0217732315501217 es_ES
dc.description.upvformatpinicio 1550121-1 es_ES
dc.description.upvformatpfin 1550121-12 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 30 es_ES
dc.description.issue 24 es_ES
dc.relation.senia 303650 es_ES
dc.identifier.eissn 1793-6632
dc.description.references Lunney, D., Pearson, J. M., & Thibault, C. (2003). Recent trends in the determination of nuclear masses. Reviews of Modern Physics, 75(3), 1021-1082. doi:10.1103/revmodphys.75.1021 es_ES
dc.description.references Weizs�cker, C. F. v. (1935). Zur Theorie der Kernmassen. Zeitschrift f�r Physik, 96(7-8), 431-458. doi:10.1007/bf01337700 es_ES
dc.description.references Wang, N., Liu, M., & Wu, X. (2010). Modification of nuclear mass formula by considering isospin effects. Physical Review C, 81(4). doi:10.1103/physrevc.81.044322 es_ES
dc.description.references Garvey, G. T., & Kelson, I. (1966). New Nuclidic Mass Relationship. Physical Review Letters, 16(5), 197-200. doi:10.1103/physrevlett.16.197 es_ES
dc.description.references Barea, J., Frank, A., Hirsch., J. G., & Isacker, P. V. (2005). Nuclear Masses Set Bounds on Quantum Chaos. Physical Review Letters, 94(10). doi:10.1103/physrevlett.94.102501 es_ES
dc.description.references Tian, J., Wang, N., Li, C., & Li, J. (2013). Improved Kelson-Garvey mass relations for proton-rich nuclei. Physical Review C, 87(1). doi:10.1103/physrevc.87.014313 es_ES
dc.description.references Duflo, J., & Zuker, A. P. (1995). Microscopic mass formulas. Physical Review C, 52(1), R23-R27. doi:10.1103/physrevc.52.r23 es_ES
dc.description.references Fu, G. J., Jiang, H., Zhao, Y. M., Pittel, S., & Arima, A. (2010). Nuclear binding energies and empirical proton-neutron interactions. Physical Review C, 82(3). doi:10.1103/physrevc.82.034304 es_ES
dc.description.references Jiang, H., Fu, G. J., Zhao, Y. M., & Arima, A. (2010). Nuclear mass relations based on systematics of proton-neutron interactions. Physical Review C, 82(5). doi:10.1103/physrevc.82.054317 es_ES
dc.description.references Vogt, K., Hartmann, T., & Zilges, A. (2001). Simple parametrization of single- and two-nucleon separation energies in terms of the neutron to proton ratio N/Z. Physics Letters B, 517(3-4), 255-260. doi:10.1016/s0370-2693(01)01014-0 es_ES
dc.description.references Bao, M., He, Z., Zhao, Y. M., & Arima, A. (2013). Empirical formulas for nucleon separation energies. Physical Review C, 87(4). doi:10.1103/physrevc.87.044313 es_ES
dc.description.references Audi, G., & Wapstra, A. H. (1995). The 1995 update to the atomic mass evaluation. Nuclear Physics A, 595(4), 409-480. doi:10.1016/0375-9474(95)00445-9 es_ES
dc.description.references Maronna, R. A., Martin, R. D., & Yohai, V. J. (2006). Robust Statistics. Wiley Series in Probability and Statistics. doi:10.1002/0470010940 es_ES
dc.description.references BOX, G. E. P. (1953). NON-NORMALITY AND TESTS ON VARIANCES. Biometrika, 40(3-4), 318-335. doi:10.1093/biomet/40.3-4.318 es_ES
dc.description.references Huber, P. J. (1981). Robust Statistics. Wiley Series in Probability and Statistics. doi:10.1002/0471725250 es_ES
dc.description.references Rousseeuw, P. J. (1984). Least Median of Squares Regression. Journal of the American Statistical Association, 79(388), 871. doi:10.2307/2288718 es_ES
dc.description.references Branham, R. L., Jr. (1982). Alternatives to least squares. The Astronomical Journal, 87, 928. doi:10.1086/113176 es_ES
dc.description.references Baselga, S. (2007). Global Optimization Solution of Robust Estimation. Journal of Surveying Engineering, 133(3), 123-128. doi:10.1061/(asce)0733-9453(2007)133:3(123) es_ES
dc.description.references Baselga, S., & García-Asenjo, L. (2008). Global robust estimation and its application to GPS positioning. Computers & Mathematics with Applications, 56(3), 709-714. doi:10.1016/j.camwa.2008.02.001 es_ES
dc.description.references Baselga, S., & García-Asenjo, L. (2008). Multipath Mitigation by Global Robust Estimation. Journal of Navigation, 61(3), 385-392. doi:10.1017/s0373463308004803 es_ES
dc.description.references Metropolis, N., Rosenbluth, A. W., Rosenbluth, M. N., Teller, A. H., & Teller, E. (1953). Equation of State Calculations by Fast Computing Machines. The Journal of Chemical Physics, 21(6), 1087-1092. doi:10.1063/1.1699114 es_ES
dc.description.references Kirkpatrick, S., Gelatt, C. D., & Vecchi, M. P. (1983). Optimization by Simulated Annealing. Science, 220(4598), 671-680. doi:10.1126/science.220.4598.671 es_ES
dc.description.references Van Laarhoven, P. J. M., & Aarts, E. H. L. (1987). Simulated Annealing: Theory and Applications. doi:10.1007/978-94-015-7744-1 es_ES
dc.description.references Pardalos, P. M., & Romeijn, H. E. (Eds.). (2002). Handbook of Global Optimization. Nonconvex Optimization and Its Applications. doi:10.1007/978-1-4757-5362-2 es_ES
dc.description.references Audi, G., Wapstra, A. H., & Thibault, C. (2003). The Ame2003 atomic mass evaluation. Nuclear Physics A, 729(1), 337-676. doi:10.1016/j.nuclphysa.2003.11.003 es_ES
dc.description.references Wang, M., Audi, G., Wapstra, A. H., Kondev, F. G., MacCormick, M., Xu, X., & Pfeiffer, B. (2012). The Ame2012 atomic mass evaluation. Chinese Physics C, 36(12), 1603-2014. doi:10.1088/1674-1137/36/12/003 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem