- -

Variability of candidate genes, genetic structure and association with sugar accumulation and climacteric behavior in a broad germplasm collection of melon (Cucumis melo L.)

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Variability of candidate genes, genetic structure and association with sugar accumulation and climacteric behavior in a broad germplasm collection of melon (Cucumis melo L.)

Mostrar el registro completo del ítem

Leida, C.; Moser, C.; Esteras Gómez, C.; Sulpice, R.; Lunn, JE.; Lagen, FD.; Monforte Gilabert, AJ.... (2015). Variability of candidate genes, genetic structure and association with sugar accumulation and climacteric behavior in a broad germplasm collection of melon (Cucumis melo L.). BMC Genetics. 16(28):1-27. https://doi.org/10.1186/s12863-015-0183-2

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/64035

Ficheros en el ítem

Metadatos del ítem

Título: Variability of candidate genes, genetic structure and association with sugar accumulation and climacteric behavior in a broad germplasm collection of melon (Cucumis melo L.)
Autor: Leida, Carmen Moser, Claudio Esteras Gómez, Cristina Sulpice, Ronan Lunn, John E. Lagen, Frank de Monforte Gilabert, Antonio José Picó Sirvent, María Belén
Entidad UPV: Universitat Politècnica de València. Departamento de Biotecnología - Departament de Biotecnologia
Fecha difusión:
Resumen:
[EN] Background A collection of 175 melon (Cucumis melo L.) accessions (including wild relatives, feral types, landraces, breeding lines and commercial cultivars) from 50 countries was selected to study the phenotypic ...[+]
Palabras clave: Germplasm collection , Sugar , Climacteric ripening , Melon
Derechos de uso: Reconocimiento (by)
Fuente:
BMC Genetics. (issn: 1471-2156 )
DOI: 10.1186/s12863-015-0183-2
Editorial:
BioMed Central
Versión del editor: https://dx.doi.org/10.1186/s12863-015-0183-2
Código del Proyecto:
info:eu-repo/grantAgreement/COST//FA1106/EU/Quality fruit/
info:eu-repo/grantAgreement/MINECO//AGL2012-40130-C02-02/ES/DESCIFRANDO LA BASE GENETICA DE LA MORFOLOGIA DEL FRUTO Y LA DOMESTICACION DE MELON/
info:eu-repo/grantAgreement/BMBF//0313987/
Agradecimientos:
C.L. is recipient of a Marie Curie Career Integration Grant (CIG) and her visit to IBMCP-COMAV (Valencia) is supported by ESF Cost Action "FA1106 Quality Fruit" - Short-Term Scientific Mission (STSM). We thank Dr. Pau ...[+]
Tipo: Artículo

References

Sebastian P, Schaefer H, Telford IRH, Renner SS. Cucumber (Cucumis sativus) and melon (C. melo) have numerous wild relatives in Asia and Australia, and the sister species of melon is from Australia. Proc Natl Acad Sci U S A. 2010;107:14269–73.

Jeffrey C. A review of the Cucurbitaceae. Bot J Linn Soc. 1980;81:233–47.

Pitrat M. Melon (Cucumis melo L.). In: Prohens J, Nuez F, editors. Handb Crop breeding, vol I Veg. New York, USA: Springer; 2008. p. 283–315. [+]
Sebastian P, Schaefer H, Telford IRH, Renner SS. Cucumber (Cucumis sativus) and melon (C. melo) have numerous wild relatives in Asia and Australia, and the sister species of melon is from Australia. Proc Natl Acad Sci U S A. 2010;107:14269–73.

Jeffrey C. A review of the Cucurbitaceae. Bot J Linn Soc. 1980;81:233–47.

Pitrat M. Melon (Cucumis melo L.). In: Prohens J, Nuez F, editors. Handb Crop breeding, vol I Veg. New York, USA: Springer; 2008. p. 283–315.

Esteras C, Formisano G, Roig C, Díaz A, Blanca J, Garcia-Mas J, et al. SNP genotyping in melons: genetic variation, population structure, and linkage disequilibrium. Theor Appl Genet. 2013;126:1285–303.

Dhillon NPS, Ranjana R, Singh K, Eduardo I, Monforte AJ, Pitrat M, et al. Diversity among landraces of Indian snapmelon (Cucumis melo var. momordica). Genet Resour Crop Evol. 2006;54:1267–83.

Dhillon NPS, Singh J, Fergany M, Monforte AJ, Sureja AK. Phenotypic and molecular diversity among landraces of snapmelon (Cucumis melo var. momordica) adapted to the hot and humid tropics of eastern India. Plant Genet Resour. 2009;7:291–300.

Mavlyanova R, Rustamov A, Khakimov R, Khakimov A, Turdieva M, Padulosi S. O'zbekiston Qovunlari [Melons of Uzbekistan]. IPGRI: Rome; 2005.

Stepansky A, Kovalski I. Intraspecific classifcation of melons (Cucumis melo L .) in view of their phenotypic and molecular variation. Plant Syst Evol. 2000;217:313–32.

Burger Y, Sa’ar U, Paris HS, Lewinsohn E, Katzir N, Tadmor Y, et al. Genetic variability for valuable fruit quality traits in Cucumis melo. Isr J Plant Sci. 2006;54:233–42.

Fernández-Trujillo JP, Picó B, Garcia-Mas J, Álvarez JM, Monforte AJ, Fernandez-Trujillo JP, et al. Breeding for fruit quality in melon. In: Jenks M-A, Bebeli PJ, editors. Breed fruit Qual. Winley-Bla. Hoboken, NJ, USA: John Wiley & Sons, Inc; 2011. p. 261–78.

Diaz A, Fergany M, Formisano G, Ziarsolo P, Blanca J, Fei Z, et al. A consensus linkage map for molecular markers and Quantitative Trait Loci associated with economically important traits in melon (Cucumis melo L.). BMC Plant Biol. 2011;11:111–51.

Dai N, Cohen S, Portnoy V, Tzuri G, Harel-Beja R, Pompan-Lotan M, et al. Metabolism of soluble sugars in developing melon fruit: a global transcriptional view of the metabolic transition to sucrose accumulation. Plant Mol Biol. 2011;76:1–18.

Ariizumi T, Higuchi K, Arakaki S, Sano T, Asamizu E, Ezura H. Genetic suppression analysis in novel vacuolar processing enzymes reveals their roles in controlling sugar accumulation in tomato fruits. J Exp Bot. 2011;62(8):2773–86.

Moreno E, Obando JM, Dos-Santos N, Fernandez-Trujillo JP, Monforte AJ, Garcia-Mas J, et al. Candidate genes and {QTLs} for fruit ripening and softening in melon. Theor Appl Genet. 2008;116:589–602.

Deleu W, Esteras C, Roig C, González-To M, Fernández-Silva I, Gonzalez-Ibeas D, et al. A set of EST-SNPs for map saturation and cultivar identification in melon. BMC Plant Biol. 2009;9:90–9.

Harel-Beja R, Tzuri G, Portnoy V, Lotan-Pompan M, Lev S, Cohen S, et al. A genetic map of melon highly enriched with fruit quality QTLs and EST markers, including sugar and carotenoid metabolism genes. Theor Appl Genet. 2010;121:511–33.

Perin C, Gomez-jimenez M, Hagen L, Dogimont C, Pech J, Pitrat M, et al. Molecular and Genetic Characterization of a Non- Climacteric Phenotype in Melon Reveals Two Loci Conferring Altered Ethylene Response in Fruit 1. Plant Physiol. 2002;129:300–9.

Obando-Ulloa JM, Moreno E, García-Mas J, Nicolai B, Lammertyn J, Monforte AJ, et al. Climacteric or non-climacteric behavior in melon fruit: 1. Aroma volatiles. Postharvest Biol Technol. 2008;49:27–37.

Zheng XY, Wolff DW. Ethylene production, shelf-life and evidence of RFLP polymorphisms linked to ethylene genes in melon (Cucumis melo L.). TAG Theor Appl Genet. 2000;101:613–24.

Eduardo I, Arus P, Monforte AJ, Obando J, Fernandez-Trujillo JP, Martinez JA, et al. Estimating the genetic architecture of fruit quality traits in melon using a genomic library of near isogenic lines. J Am Soc Hortic Sci. 2007;132:80–9.

Fita A, Picó B, Monforte AJ, Nuez F. Genetics of Root System Architecture Using Near-isogenic Lines of Melon. J Am Soc Hortic Sci. 2008;133:448–58.

Obando-Ulloa JM, Nicolai B, Lammertyn J, Bueso MC, Monforte AJ, Fernández-Trujillo JP. Aroma volatiles associated with the senescence of climacteric or non-climacteric melon fruit. Postharvest Biol Technol. 2009;52:146–55.

Vegas J, Garcia-Mas J, Monforte AJ. Interaction between QTLs induces an advance in ethylene biosynthesis during melon fruit ripening. Theor Appl Genet. 2013;126:1531–44.

Pech JC, Bouzayen M, Latche A. Climacteric fruit ripening: Ethylene-dependent and independent regulation of ripening pathways in melon fruit. Plant Sci. 2008;175:114–20.

Chervin C, El-Kereamy A, Roustan J-P, Latché A, Lamon J, Bouzayen M. Ethylene seems required for the berry development and ripening in grape, a non-climacteric fruit. Plant Sci. 2004;167:1301–5.

Trainotti L, Pavanello A, Casadoro G, Colombo VG, Padova I. Different ethylene receptors show an increased expression during the ripening of strawberries: does such an increment imply a role for ethylene in the ripening of these non-climacteric fruits? J Exp Bot. 2005;56:2037–46.

Gao F, Hao J, Yao Y, Wang X, Hasi A. Cloning and characterization of ethylene-insensitive 2 (EIN2) gene from Cucumis melo. Russian J Plant Physio. 2013;60:713–9.

Kendrick MD, Chang C. Ethylene signaling: new levels of complexity and regulation. Curr Opin Plant Biol. 2008;11:479–85.

Eriksson EM, Bovy A, Manning K, Harrison L, Andrews J, De Silva J, et al. Effect of the Colorless non-ripening mutation on cell wall biochemistry and gene expression during tomato fruit development and ripening. Plant Physiol. 2004;136:4184–97.

Giovannoni JJ. Fruit ripening mutants yield insights into ripening control. Curr Opin Plant Biol. 2007;10:283–9.

Manning K, Tor M, Poole M, Hong Y, Thompson AJ, King GJ, et al. A naturally occurring epigenetic mutation in a gene encoding an SBP-box transcription factor inhibits tomato fruit ripening. Nat Genet. 2006;38:948–52.

Lin Z, Hong Y, Yin M, Li C, Zhang K, Grierson D. A tomato HD-Zip homeobox protein, LeHB-1, plays an important role in floral organogenesis and ripening. Plant J. 2008;55:301–10.

Yoshida H, Nagata M, Saito K, Wang KLC, Ecker JR. Arabidopsis ETO1 specifically interacts with and negatively regulates type 2 1-aminocyclopropane-1-carboxylate synthases. BMC Plant Biol. 2005;5:14.

Lincoln JE, Cordes S, Read E, Fischer RL. Regulation of gene expression by ethylene during Lycopersicon esculentum (tomato ) fruit development. Proc Natl Acad Sci. 1987;84:2793–7.

Deikman J, Xu R, Kneissl ML, Ciardi JA, Kim KN, Pelah D. Separation of cis elements responsive to ethylene, fruit development, and ripening in the 5’-flanking region of the ripening-related E8 gene. Plant Mol Biol. 1998;37:1001–11.

Klee HJ, Giovannoni JJ. Genetics and control of tomato fruit ripening and quality attributes. Annu Rev Genet. 2011;45:41–59.

Fujisawa M, Nakano T, Shima Y, Ito Y. A Large-Scale Identification of Direct Targets of the Tomato MADS Box Transcription Factor RIPENING INHIBITOR Reveals the Regulation of Fruit Ripening. Plant Cell. 2013;25:371–86.

Mascarell-Creus A, Cañizares J, Vilarrasa-Blasi J, Mora-García S, Blanca J, Gonzalez-Ibeas D, et al. An oligo-based microarray offers novel transcriptomic approaches for the analysis of pathogen resistance and fruit quality traits in melon (Cucumis melo L.). BMC Genomics. 2009;10:467.

Esteras C, Lunn J, Sulpice R, Blanca J, Garcia-Mas J, Pitrat M et al. Phenotyping a highly diverse core melon collection to be screened using Ecotilling. Plant Genomics Eur Meet (Plant Gem), Lisbon (Portugal), 7–10 Oct 2009 2009:214.

González M, Xu M, Esteras C, Roig C, Monforte AJ, Troadec C, et al. Towards a TILLING platform for functional genomics in Piel de Sapo melons. BMC Res Notes. 2011;4:289.

Eduardo I, Arús P, Monforte AJ. Development of a genomic library of near isogenic lines (NILs) in melon (Cucumis melo L.) from the exotic accession PI161375. Theor Appl Genet. 2005;112:139–48.

Gonzalo MJ, Claveria E, Monforte AJ, Dolcet-sanjuan R. Parthenogenic Haploids in Melon : Generation and Molecular Characterization of a Doubled Haploid Line Population. J Amer Soc Hort Sci. 2011;136:145–54.

Blanca J, Cañizares J, Ziarsolo P, Esteras C, Mir G, Nuez F, et al. Melon transcriptome characterization: Simple sequence repeats and Single nucleotide polymorphisms discovery for high throughput genotyping across the species. The Plant Genome. 2011;4(2):118–31.

Blanca J, Esteras C, Ziarsolo P, Pérez D, Fernandez-Pedrosa V, Collado C, et al. Transcriptome sequencing for SNP discovery across Cucumis melo. BMC Genomics. 2012;13:280.

Garcia-Mas J, Benjak A, Sanseverino W, Bourgeois M, Mir G, González VM, et al. The genome of melon (Cucumis melo L.). Proc Natl Acad Sci. 2012;109:11872–7.

Esteras C, Nuez F, Picó B. Genetic diversity studies in Cucurbits using molecular tools. In: Behera T, Wang Y, Kole C, editors. Genet Genomics Breed Cucurbits. New Hampshire: CRC Press; 2012. p. 140–98.

Monforte AJ, Oliver M, Gonzalo MJ, Alvarez JM, Dolcet-Sanjuan R, Arús P. Identification of quantitative trait loci involved in fruit quality traits in melon (Cucumis melo L.). Theor Appl Genet. 2004;108:750–8.

Evanno G, Regnaut S, Goudet J. Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol. 2005;14:2611–20.

Provvidenti R. A Source of a High Level of Tolerance to Squash Mosaic Virus in a Melon from China. Cucurbit Genet Coop Rep. 1998;21:29–30.

Yu X, Wang X, Zhang W, Qian T, Tang G, Guo Y, et al. Antisense suppression of an acid invertase gene (MAI1) in muskmelon alters plant growth and fruit development. J Exp Bot. 2008;59:2969–77.

Yoo S-D, Cho Y, Sheen J. Emerging connections in the ethylene signaling network. Trends Plant Sci. 2009;14:270–9.

Cara B, Giovannoni JJ. Molecular biology of ethylene during tomato fruit development and maturation. Plant Sci. 2008;175:106–13.

Devoto A, Hartmann H, Piffanelli P, Elliott C, Simmons C, Taramino G, et al. Molecular phylogeny and evolution of the plant-specific seven-transmembrane MLO family. J Mol Evol. 2003;56:77–88.

Clayberg CD. Interaction and linkage tests of flesh color genes in Cucumis melo L. Cucurbit Genet Coop Rep. 1992;15:53.

Dhillon N, Monforte A, Pitrat M, Pandey S, Singht P, Reitsma KR, et al. Melon landraces of India: contributions and importance. Plant Breed Rev. 2012;35:85–150.

Tomason Y, Nimmakayala P, Levi A, Reddy UK. Map-based molecular diversity, linkage disequilibrium and association mapping of fruit traits in melon. Mol Breed. 2013;31:829–41.

Esteras C, Pascual L, Saladie M, Dogimont C, Garcia-Mas J, Nuez F et al. Use of Ecotilling to identify natural allelic variants of melon candidate genes involved in fruit ripening. In Plant Genomics Eur Meet (Plant Gem), Lisboa (Portugal), PLANT GEM 7-10 Oct 2009; 2009:213.

Lasserre E, Bouquin T, Hernandez JA, Bull J, Pech JC, Balagué C. Structure and expression of three genes encoding ACC oxidase homologs from melon (Cucumis melo L.). Mol Gen Genet. 1996;251:81–90.

Chervin C, Deluc L. Ethylene signalling receptors and transcription factors over the grape berry development: gene expression profiling. Vitis. 2010;49:129–36.

Kieber JJ, Rothenberg M, Roman G, Feldmann KA, Ecker JR. CTR1, a negative regulator of the ethylene response pathway in Arabidopsis, encodes a member of the raf family of protein kinases. Cell. 1993;72:427–41.

Wang A, Tan D, Takahashi A, Li TZ, Harada T. MdERFs, two ethylene-response factors involved in apple fruit ripening. J Exp Bot. 2007;58:3743–8.

Bassett C, Artlip T, Nelson M. Characterization of an ETR homologue from peach (Prunus persica). Plant Biol 1999.

Barry CS, Mcquinn RP, Thompson AJ, Seymour GB, Grierson D, Giovannoni JJ, et al. Ethylene Insensitivity Conferred by the Green-ripe and Never-ripe 2 Ripening Mutants of Tomato 1. Plant Physiol. 2005;138:267–75.

Giovannoni JJ. Genetic Regulation of Fruit Development and Ripening. Plant Cell. 2004;16:170–81.

Lanahan MB. The Never Ripe Mutation Blocks Ethylene Perception in Tomato. Plant Cell. 1994;6:521–30.

Wilkinson J, Lanahan M, Yen H, Giovannoni J, Klee H. An ethylene-inducible component of signal transduction encoded by NEVER-RIPE. Science. 1995;270:1807–9.

Yang YW, Wu Y, Pirrello J, Regad F, Bouzayen M, Deng W, et al. Silencing Sl-EBF1 and Sl EBF2 expression causes constitutive ethylene response phenotype, accelerate plant senescence and fruit ripening in tomato. J Exp Bot. 2010;61:697–708.

Vrebalov J, Ruezinsky D, Padmanabhan V, White R, Medrano D, Drake R, et al. A MADS-box gene necessary for fruit ripening at the tomato ripening-inhibitor (Rin) locus. Science. 2002;296:343–6.

Saladié M, Rose JKC, Cosgrove DJ, Catalá C. Characterization of a new xyloglucan endotransglucosylase/hydrolase (XTH) from ripening tomato fruit and implications for the diverse modes of enzymic action. Plant J. 2006;47:282–95.

Ng PC, Henikoff S. SIFT: predicting amino acid changes that affect protein function. Nucleic Acids Res. 2003;31:3812–4.

Doyle JJDJ. Isolation of plant DNA from fresh tissue. Focus. 1990;12:13–15.74.

Stitt M, Lilley R, Gerhardt R, Heldt H. Determination of metabolite levels in specific cells and subcellular compartments of plant leave. Methods Enzym. 1989;174:518–22.

Jombart T, Ahmed I. adegenet 1.3–1: new tools for the analysis of genome-wide SNP data. Bioinformatics. 2011;27:3070–1.

Jombart T. adegenet: a R package for the multivariate analysis of genetic markers. Bioinformatics. 2008;24:1403–5.

Pritchard JK, Stephens M, Donnelly P. Inference of population structure using multilocus genotype data. Genetics. 2000;155:945–59.

Liu K, Muse SV. PowerMarker: an integrated analysis environment for genetic marker analysis. Bioinformatics. 2005;21:2128–9.

Bradbury PJ, Zhang Z, Kroon DE, Casstevens TM, Ramdoss Y, Buckler ES. TASSEL: Software for association mapping of complex traits in diverse samples. Bioinformatics. 2007;23:2633–5.

Breseghello F, Sorrells ME. Association mapping of kernel size and milling quality in wheat (Triticum aestivum L.) cultivars. Genetics. 2006;172:1165–77.

Peltier J: LOESS Smoothing in Excel. 2009.

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem