- -

A V2I-based real-time traffic density estimation system in urban scenarios

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

A V2I-based real-time traffic density estimation system in urban scenarios

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Barrachina, Javier es_ES
dc.contributor.author Garrido, Piedad es_ES
dc.contributor.author Fogue, Manuel es_ES
dc.contributor.author Martínez, Francisco J. es_ES
dc.contributor.author Cano Escribá, Juan Carlos es_ES
dc.contributor.author Tavares de Araujo Cesariny Calafate, Carlos Miguel es_ES
dc.contributor.author Manzoni, Pietro es_ES
dc.date.accessioned 2016-05-16T09:16:22Z
dc.date.available 2016-05-16T09:16:22Z
dc.date.issued 2015-07
dc.identifier.issn 0929-6212
dc.identifier.uri http://hdl.handle.net/10251/64102
dc.description The final publication is available at Springer via http://dx.doi.org/10.1007/s11277-015-2392-4 es_ES
dc.description.abstract The number of vehicles in our roads is drastically increasing, especially in developing countries. In addition, these vehicles tend to be concentrated in urban areas which present a large population. Since traffic jams have important and mostly negative consequences, such as increasing travel time, fuel consumption, and air pollution, governments are making efforts to alleviate the increasing traffic pressure, being vehicular density one of the main metrics used for assessing the road traffic conditions. However, vehicle density is highly variable in time and space, making it difficult to be estimated accurately. In this paper, we present a solution to estimate the density of vehicles in urban scenarios. Our proposal, that has been specially designed for vehicular networks, allows intelligent transportation systems to continuously estimate vehicular density by accounting for the number of beacons received per road side unit (RSU), and also considering the roadmap topology where the RSUs are located. Using V2I communications, we are able to estimate the traffic density in a certain area, which represents a key parameter to perform efficient traffic redirection, thereby reducing the vehicles’ travel time and avoiding traffic. es_ES
dc.description.sponsorship This work was partially supported by the Ministerio de Ciencia e Innovacion, Spain, under Grant TIN2011-27543-C03-01, and by the Government of Aragon and the European Social Fund (T91 Research Group). en_EN
dc.language Inglés es_ES
dc.publisher Springer Verlag es_ES
dc.relation.ispartof Wireless Personal Communications es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Vehicular networks es_ES
dc.subject Vehicular density estimation es_ES
dc.subject V2I communications es_ES
dc.subject Road side unit es_ES
dc.subject VANETs es_ES
dc.subject.classification ARQUITECTURA Y TECNOLOGIA DE COMPUTADORES es_ES
dc.title A V2I-based real-time traffic density estimation system in urban scenarios es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1007/s11277-015-2392-4
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//TIN2011-27543-C03-01/ES/WALKIE-TALKIE: SOPORTE A ENTORNOS DE TRANSPORTE SEGURO, INTELIGENTE Y SOSTENIBLE PARA LA FUTURA GENERACION DE COCHES INTELIGENTES/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Informática de Sistemas y Computadores - Departament d'Informàtica de Sistemes i Computadors es_ES
dc.description.bibliographicCitation Barrachina, J.; Garrido, P.; Fogue, M.; Martínez, FJ.; Cano Escribá, JC.; Tavares De Araujo Cesariny Calafate, CM.; Manzoni, P. (2015). A V2I-based real-time traffic density estimation system in urban scenarios. Wireless Personal Communications. 83(1):259-280. https://doi.org/10.1007/s11277-015-2392-4 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://link.springer.com/article/10.1007%2Fs11277-015-2392-4 es_ES
dc.description.upvformatpinicio 259 es_ES
dc.description.upvformatpfin 280 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 83 es_ES
dc.description.issue 1 es_ES
dc.relation.senia 290375 es_ES
dc.identifier.eissn 1572-834X
dc.contributor.funder Ministerio de Ciencia e Innovación es_ES
dc.contributor.funder Gobierno de Aragón es_ES
dc.contributor.funder European Social Fund es_ES
dc.description.references Stanica, R., Chaput, E., & Beylot, A. (2011). Local density estimation for contention window adaptation in vehicular networks. In IEEE 22nd international symposium on personal indoor and mobile radio communications (PIMRC) (pp. 730–734). es_ES
dc.description.references Tyagi, V., Kalyanaraman, S., & Krishnapuram, R. (2012). Vehicular traffic density state estimation based on cumulative road acoustics. IEEE Transactions on Intelligent Transportation Systems, 13(3), 1156–1166. es_ES
dc.description.references Tan, E., & Chen, J. (2007). Vehicular traffic density estimation via statistical methods with automated state learning. In IEEE conference on advanced video and signal based surveillance (AVSS) (pp. 164–169). es_ES
dc.description.references Dias, J. A., Rodrigues, J. J., & Zhou, L. (2013). Performance evaluation of cooperative strategies for vehicular delay-tolerant networks. Transactions on Emerging Telecommunications Technologies. doi: 10.1002/ett.2683 es_ES
dc.description.references Chou, L.-D., Yang, J.-Y., Hsieh, Y.-C., Chang, D.-C., & Tung, C.-F. (2011). Intersection-based routing protocol for VANETs. Wireless Personal Communications, 60(1), 105–124. es_ES
dc.description.references Fogue, M., Garrido, P., Martinez, F. J., Cano, J.-C., Calafate, C. T., & Manzoni, P. (2013). An adaptive system based on roadmap profiling to enhance warning message dissemination in VANETs. IEEE/ACM Transactions on Networking, 21(3), 883–895. es_ES
dc.description.references Soldo, F., Lo Cigno, R., & Gerla, M. (2008). Cooperative synchronous broadcasting in infrastructure-to-vehicles networks. In Fifth annual conference on wireless on demand network systems and services (WONS) (pp. 125–132). es_ES
dc.description.references Vales-Alonso, J., Vicente-Carrasco, F., & Alcaraz, J. (2011). Optimal configuration of roadside beacons in V2I communications. Computer Networks, 55(14), 3142–3153. es_ES
dc.description.references Fazio, P., De Rango, F., & Lupia, A. (2013). A new application for enhancing VANET services in emergency situations using the WAVE/802.11p standard. In IFIP wireless days (WD) (pp. 1–3). es_ES
dc.description.references Ghafoor, K., Lloret, J., Bakar, K., Sadiq, A., & Mussa, S. (2013). Beaconing approaches in vehicular ad hoc networks: A survey. Wireless Personal Communications, 73(3), 885–912. es_ES
dc.description.references Martinez, F. J., Cano, J.-C., Calafate, C. T., Manzoni, P., & Barrios, J. M. (2009). Assessing the feasibility of a VANET. In ACM workshop on performance monitoring, measurement and evaluation of heterogeneous wireless and wired networks (PM2HW2N,. 2009. held with MSWiM) (pp. 39–45). New York, NY, USA: ACM. es_ES
dc.description.references Deng, D.-J., Chen, H.-C., Chao, H.-C., & Huang, Y.-M. (2011). A collision alleviation scheme for IEEE 802.11p VANETs. Wireless Personal Communications, 56(3), 371–383. es_ES
dc.description.references Santa, J., Toledo-Moreo, R., Zamora-Izquierdo, M. A., Ubeda, B., & Gomez-Skarmeta, A. F. (2010). An analysis of communication and navigation issues in collision avoidance support systems. Transportation Research Part C: Emerging Technologies, 18(3), 351–366. es_ES
dc.description.references Kumar, N., Chilamkurti, N., & Rodrigues, J. J. (2013). Learning automata-based opportunistic data aggregation and forwarding scheme for alert generation in vehicular ad hoc networks. Computer Communications, 39, 22–32. doi: 10.1016/j.comcom.2013.09.005 . es_ES
dc.description.references Galaviz-Mosqueda, G. A., Aquino-Santos, R., Villarreal-Reyes, S., Rivera-Rodriguez, R., Villaseñor Gonzalez, L., & Edwards, A. (2012). Reliable freestanding position-based routing in highway scenarios. Sensors, 12(11), 14262–14291. es_ES
dc.description.references Chen, P.-Y., Liu, J.-W., & Chen, W.-T. (2010). A fuel-saving and pollution-reducing dynamic taxi-sharing protocol in VANETs. In IEEE 72nd Vehicular Technology Conference Fall (VTC 2010-Fall) (pp. 1–5). es_ES
dc.description.references Bekris, K., Tsianos, K., & Kavraki, L. (2009). Safe and distributed kinodynamic replanning for vehicular networks. Mobile Networks and Applications, 14(3), 292–308. es_ES
dc.description.references Gonzalez, A. J., Alcober, J., de Pozuelo, R. M., Pinyol, F., & Ghafoor, K. Z. (2011). Context-aware multimedia service composition using quality assessment. In IEEE international conference on multimedia and expo (ICME) (pp. 1–6). es_ES
dc.description.references Maslekar, N., Boussedjra, M., Mouzna, J., & Labiod, H. (2011). A stable clustering algorithm for efficiency applications in VANETs. In 7th International wireless communications and mobile computing conference (IWCMC) (pp. 1188–1193). es_ES
dc.description.references Shirani, R., Hendessi, F., & Gulliver, T. (2009). Store-carry-forward message dissemination in vehicular ad-hoc networks with local density estimation. In IEEE 70th Vehicular Technology Conference Fall (VTC 2009-Fall) (pp. 1–6). es_ES
dc.description.references Balcilar, M., & Sonmez, A. (2008). Extracting vehicle density from background estimation using Kalman filter. In 23rd International symposium on computer and information sciences (ISCIS ’08) (pp. 1–5). es_ES
dc.description.references Thakur, G., Hui, P., Ketabdar, H., & Helmy, A. (2011). Spatial and temporal analysis of planet scale vehicular imagery data. In IEEE 11th international conference on data mining workshops (ICDMW) (pp. 905–910). es_ES
dc.description.references Sanguesa, J. A., Fogue, M., Garrido, P., Martinez, F. J., Cano, J.-C., Calafate, C., et al. (2013). An infrastructureless approach to estimate vehicular density in urban environments. Sensors, 13, 2399–2406. es_ES
dc.description.references Rodrigue, J.-P., & Notteboom, T. (2012). The geography of transport systems. http://people.hofstra.edu/geotrans es_ES
dc.description.references Schrank, D., Lomax, T., Turner, S. (2010). TTIs 2010 urban mobility report powered by INRIX traffic data. Texas Transportation Institute, The Texas A&M University System. http://mobility.tamu.edu/ums/ es_ES
dc.description.references Ye, Z., Limin, J., Guoqiang, C., & Min, G. (2008). Approach and application of transportation state analysis. In Fourth international conference on networked computing and advanced information management (NCM ’08) (Vol. 2, pp. 260–265). es_ES
dc.description.references Krajzewicz, D., Erdmann, J., Behrisch, M., & Bieker, L. (2012). Recent development and applications of SUMO—Simulation of urban mobility. International Journal on Advances in Systems and Measurements, 5(3&4), 128–138. es_ES
dc.description.references OpenStreetMap (2012). Collaborative project to create a free editable map of the world. http://www.openstreetmap.org es_ES
dc.description.references Martinez, F. J., Fogue, M., Toh, C. K., Cano, J.-C., Calafate, C. T., & Manzoni, P. (2013). Computer simulations of VANETs using realistic city topologies. Wireless Personal Communications, 69(2), 639–663. es_ES
dc.description.references Fogue, M., Garrido, P., Martinez, F. J., Cano, J.-C., Calafate, C. T., & Manzoni, P. (2012). Evaluating the impact of a novel message dissemination scheme for vehicular networks using real maps. Transportation Research Part C: Emerging Technologies, 25, 61–80. es_ES
dc.description.references Fall, K., & Varadhan, K. (2000). “ns notes and documents,” The VINT Project. UC Berkeley, LBL, USC/ISI, and Xerox PARC. http://www.isi.edu/nsnam/ns/ns-documentation.html es_ES
dc.description.references Barrachina, J., Garrido, P., Fogue, M., Martinez, F. J., Cano, J.-C., Calafate, C. T., et al. (2012). D-RSU: A density-based approach for road side unit deployment in urban scenarios. In International workshop on ipv6-based vehicular networks (Vehi6), collocated with the 2012 IEEE intelligent vehicles symposium (pp. 1–6). es_ES
dc.description.references Fogue, M., Garrido, P., Martinez, F. J., Cano, J.-C., Calafate, C. T., & Manzoni, P. (2012). A realistic simulation framework for vehicular networks. In 5th International ICST conference on simulation tools and techniques (SIMUTools 2012) (pp. 37–46). Desenzano, Italy. es_ES
dc.description.references Krauss, S., Wagner, P., & Gawron, C. (1997). Metastable states in a microscopic model of traffic flow. Physical Review E, 55(5), 5597–5602. es_ES
dc.description.references Barrachina, J., Garrido, P., Fogue, M., Martinez, F. J., Cano, J.-C., Calafate, C. T., et al. (2012). VEACON: A vehicular accident ontology designed to improve safety on the roads. Journal of Network and Computer Applications, 35(6), 1891–1900. es_ES
dc.description.references ZunZun. (2012). Online curve fitting and surface fitting web site. http://www.zunzun.com es_ES
dc.description.references Anand, R., Vanajakshi, L., & Subramanian, S. (2011). Traffic density estimation under heterogeneous traffic conditions using data fusion. In IEEE intelligent vehicles symposium (IV) (pp. 31–36). es_ES
dc.description.references Hattori, Y., Hashimoto, T., & Inoue, S. (1999). A study for the traffic flow control considering the capacity of the road by cellular automaton method. In IEEE international conference on systems, man, and cybernetics (SMC ’99) (Vol. 4, pp. 569–573). es_ES
dc.description.references Bedi, P., Mediratta, N., Dhand, S., Sharma, R., & Singhal, A. (2007). Avoiding traffic jam using ant colony optimization—A novel approach. In International conference on computational intelligence and multimedia applications (Vol. 1, pp. 61–67). es_ES
dc.description.references Yin, Z., Junli, W., & Huapu, L. (2008). A study on urban traffic congestion dynamic predict method based on advanced fuzzy clustering model. In International conference on computational intelligence and security (CIS ’08) (Vol. 2, pp. 96–100). es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem