- -

Application of the Jacobi Davidson method for spectral low-rank preconditioning in computational electromagnetics problems

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Application of the Jacobi Davidson method for spectral low-rank preconditioning in computational electromagnetics problems

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Mas Marí, José es_ES
dc.contributor.author Cerdán Soriano, Juana Mercedes es_ES
dc.contributor.author Malla Martínez, Natalia es_ES
dc.contributor.author Marín Mateos-Aparicio, José es_ES
dc.date.accessioned 2016-05-16T10:40:53Z
dc.date.available 2016-05-16T10:40:53Z
dc.date.issued 2015-01
dc.identifier.issn 2254-3902
dc.identifier.uri http://hdl.handle.net/10251/64112
dc.description.abstract [EN] We consider the numerical solution of linear systems arising from computational electromagnetics applications. For large scale problems the solution is usually obtained iteratively with a Krylov subspace method. It is well known that for ill conditioned problems the convergence of these methods can be very slow or even it may be impossible to obtain a satisfactory solution. To improve the convergence a preconditioner can be used, but in some cases additional strategies are needed. In this work we study the application of spectral lowrank updates (SLRU) to a previously computed sparse approximate inverse preconditioner.The updates are based on the computation of a small subset of the eigenpairs closest to the origin. Thus, the performance of the SLRU technique depends on the method available to compute the eigenpairs of interest. The SLRU method was first used using the IRA s method implemented in ARPACK. In this work we investigate the use of a Jacobi Davidson method, in particular its JDQR variant. The results of the numerical experiments show that the application of the JDQR method to obtain the spectral low-rank updates can be quite competitive compared with the IRA s method. es_ES
dc.language Inglés es_ES
dc.publisher Springer es_ES
dc.relation.ispartof Journal of the Spanish Society of Applied Mathematics es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Iterative methods es_ES
dc.subject Preconditioning es_ES
dc.subject Jacobi Davidson es_ES
dc.subject Computational electromagnetics es_ES
dc.subject Spectral low-rank updates es_ES
dc.subject.classification MATEMATICA APLICADA es_ES
dc.title Application of the Jacobi Davidson method for spectral low-rank preconditioning in computational electromagnetics problems es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1007/s40324-014-0025-6
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario de Matemática Multidisciplinar - Institut Universitari de Matemàtica Multidisciplinària es_ES
dc.description.bibliographicCitation Mas Marí, J.; Cerdán Soriano, JM.; Malla Martínez, N.; Marín Mateos-Aparicio, J. (2015). Application of the Jacobi Davidson method for spectral low-rank preconditioning in computational electromagnetics problems. Journal of the Spanish Society of Applied Mathematics. 67:39-50. doi:10.1007/s40324-014-0025-6 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://dx.doi.org/10.1007/s40324-014-0025-6 es_ES
dc.description.upvformatpinicio 39 es_ES
dc.description.upvformatpfin 50 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 67 es_ES
dc.relation.senia 291957 es_ES
dc.identifier.eissn 2281-7875
dc.description.references Bergamaschi, L., Pini, G., Sartoretto, F.: Computational experience with sequential, and parallel, preconditioned Jacobi–Davidson for large sparse symmetric matrices. J. Comput. Phys. 188(1), 318–331 (2003) es_ES
dc.description.references Carpentieri, B.: Sparse preconditioners for dense linear systems from electromagnetics applications. PhD thesis, Institut National Polytechnique de Toulouse, CERFACS (2002) es_ES
dc.description.references Carpentieri, B., Duff, I.S., Giraud, L.: Sparse pattern selection strategies for robust Frobenius-norm minimization preconditioners in electromagnetism. Numer. Linear Algebr. Appl. 7(7–8), 667–685 (2000) es_ES
dc.description.references Carpentieri, B., Duff, I.S., Giraud, L.: A class of spectral two-level preconditioners. SIAM J. Sci. Comput. 25(2), 749–765 (2003) es_ES
dc.description.references Carpentieri, B., Duff, I.S., Giraud, L., Magolu monga Made, M.: Sparse symmetric preconditioners for dense linear systems in electromagnetism. Numer. Linear Algebr. Appl. 11(8–9), 753–771 (2004) es_ES
dc.description.references Carpentieri, B., Duff, I.S., Giraud, L., Sylvand, G.: Combining fast multipole techniques and an approximate inverse preconditioner for large electromagnetism calculations. SIAM J. Sci. Comput. 27(3), 774–792 (2005) es_ES
dc.description.references Darve, E.: The fast multipole method I: error analysis and asymptotic complexity. SIAM J. Numer. Anal. 38(1), 98–128 (2000) es_ES
dc.description.references Fokkema, D.R., Sleijpen, G.L., Van der Vorst, H.A.: Jacobi–Davidson style QR and QZ algorithms for the reduction of matrix pencils. SIAM J. Sci. Comput. 20(1), 94–125 (1998) es_ES
dc.description.references Greengard, L., Rokhlin, V.: A fast algorithm for particle simulations. J. Comput. Phys. 73(3), 325–348 (1987) es_ES
dc.description.references Grote, M., Huckle, T.: Parallel preconditioning with sparse approximate inverses. SIAM J. Sci. Comput. 18(3), 838–853 (1997) es_ES
dc.description.references Harrington, R.: Origin and development of the method of moments for field computation. IEEE Antenna Propag. Mag. (1990) es_ES
dc.description.references Kunz, K.S., Luebbers, R.J.: The finite difference time domain method for electromagnetics. SIAM J. Sci. Comput. 18(3), 838–853 (1997) es_ES
dc.description.references Maxwell, J.C.: A dynamical theory of the electromagnetic field. Roy. S. Trans. CLV, (1864). Reprinted in Tricker, R. A. R. The Contributions of Faraday and Maxwell to Electrial Science, Pergamon Press (1966) es_ES
dc.description.references Marín, J., Malla M.: Some experiments preconditioning via spectral low rank updates for electromagnetism applications. In: Proceedings of the international conference on preconditioning techniques for large sparse matrix problems in scientific and industrial applications (Preconditioning 2007), Toulouse (2007) es_ES
dc.description.references Meijerink, J.A., van der Vorst, H.A.: An iterative solution method for linear systems of which the coefficient matrix is a symmetric M-matrix. Math. Comput. 31, 148–162 (1977) es_ES
dc.description.references Sorensen, D.C., Lehoucq, R.B., Yang, C.: ARPACK users’ guide: solution of large-scale eigenvalue problems with implicitly restarted Arnoldi methods. SIAM, Philadelphia (1998) es_ES
dc.description.references Rao, S.M., Wilton, D.R., Glisson, A.W.: Electromagnetic scattering by surfaces of arbitrary shape. IEEE Trans. Antenna Propag. 30, 409–418 (1982) es_ES
dc.description.references Saad, Y.: Iterative methods for sparse linear systems. PWS Publishing Company, Boston (1996) es_ES
dc.description.references Silvester, P.P., Ferrari, R.L.: Finite elements for electrical engineers. Cambridge University Press, Cambridge (1990) es_ES
dc.description.references Sleijpen, S.L., van der Vorst, H.A.: A Jacobi–Davidson iteration method for linear eigenvalue problems. SIAM J. Matrix Anal. Appl. 17, 401–425 (1996) es_ES
dc.description.references van der Vorst, H.A.: Bi-CGSTAB: a fast and smoothly converging variant of Bi-CG for the solution of non-symmetric linear systems. SIAM J. Sci. Stat. Comput. 12(6), 631–644 (1992) es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem