- -

Environmentally induced changes in antioxidant phenolic compounds levels in wild plants

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Environmentally induced changes in antioxidant phenolic compounds levels in wild plants

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Bautista, Inmaculada es_ES
dc.contributor.author Boscaiu, Mónica es_ES
dc.contributor.author Lidón, A. es_ES
dc.contributor.author Llinares Palacios, Josep Vicent es_ES
dc.contributor.author Lull, Cristina es_ES
dc.contributor.author Donat-Torres, María P. es_ES
dc.contributor.author Mayoral García-Berlanga, Olga es_ES
dc.contributor.author Vicente, Óscar es_ES
dc.date.accessioned 2016-05-16T11:06:23Z
dc.date.available 2016-05-16T11:06:23Z
dc.date.issued 2016-01
dc.identifier.issn 0137-5881
dc.identifier.uri http://hdl.handle.net/10251/64113
dc.description.abstract [EN] Different adverse environmental conditions cause oxidative stress in plants by generation of reactive oxygen species (ROS). Accordingly, a general response to abiotic stress is the activation of enzymatic and non-enzymatic antioxidant systems. Many phenolic compounds, especially flavonoids, are known antioxidants and efficient ROS scavengers in vitro, but their exact role in plant stress responses in nature is still under debate. The aim of our work is to investigate this role by correlating the degree of environmental stress with phenolic and flavonoid levels in stress-tolerant plants. Total phenolic and antioxidant flavonoid contents were determined in 19 wild species. Meteorological data and plant and soil samples were collected in three successive seasons from four Mediterranean ecosystems: salt marsh, dune, semiarid and gypsum habitats. Changes in phenolic and flavonoid levels were correlated with the environmental conditions of the plants and were found to depend on both the taxonomy and ecology of the investigated species. Despite species-specific differences, principal component analyses of the results established a positive correlation between plant phenolics and several environmental parameters, such as altitude, and those related to water stress: temperature, evapotranspiration, and soil water deficit. The correlation with salt stress was, however, very weak. The joint analysis of all the species showed the lowest phenolic and flavonoid levels in the halophytes from the salt marsh. This finding supports previous data indicating that the halophytes analysed here do not undergo oxidative stress in their natural habitat and therefore do not need to activate antioxidant systems as a defence against salinity. es_ES
dc.description.sponsorship This work has been funded by the Spanish Ministry of Science and Innovation (Project CGL2008-00438/BOS), with contribution from the European Regional Development Fund. Thanks to Dr. Rafael Herrera for critical reading of the manuscript. en_EN
dc.language Inglés es_ES
dc.publisher Springer Verlag (Germany) es_ES
dc.relation.ispartof Acta Physiologiae Plantarum es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Dunes es_ES
dc.subject Salt marshes es_ES
dc.subject Gypsum habitats es_ES
dc.subject Salt stress es_ES
dc.subject Water stress es_ES
dc.subject.classification BOTANICA es_ES
dc.subject.classification BIOLOGIA VEGETAL es_ES
dc.subject.classification EDAFOLOGIA Y QUIMICA AGRICOLA es_ES
dc.subject.classification BIOQUIMICA Y BIOLOGIA MOLECULAR es_ES
dc.title Environmentally induced changes in antioxidant phenolic compounds levels in wild plants es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1007/s11738-015-2025-2
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//CGL2008-00438/ES/RESPUESTAS DE LAS PLANTAS AL ESTRES ABIOTICO: CORRELACION CON LAS CARACTERISTICAS EDAFICAS DE SUS HABITATS NATURALES/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Química - Departament de Química es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ecosistemas Agroforestales - Departament d'Ecosistemes Agroforestals es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Biotecnología - Departament de Biotecnologia es_ES
dc.description.bibliographicCitation Bautista, I.; Boscaiu, M.; Lidón, A.; Llinares Palacios, JV.; Lull, C.; Donat-Torres, MP.; Mayoral García-Berlanga, O.... (2016). Environmentally induced changes in antioxidant phenolic compounds levels in wild plants. Acta Physiologiae Plantarum. 38(1):1-15. https://doi.org/10.1007/s11738-015-2025-2 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://dx.doi.org/10.1007/s11738-015-2025-2 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 15 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 38 es_ES
dc.description.issue 1 es_ES
dc.relation.senia 302770 es_ES
dc.identifier.eissn 1861-1664
dc.contributor.funder Ministerio de Ciencia e Innovación
dc.description.references Agati G, Biricolti S, Guidi L, Ferrini F, Fini A, Tattini M (2011) The biosynthesis of flavonoids is enhanced similarly by UV radiation and root zone salinity in L. vulgare leaves. J Plant Physiol 168:204–212 es_ES
dc.description.references Agati G, Brunetti C, Di Ferdinando M, Ferrini F, Pollastri S, Tattini M (2013) Functional roles of flavonoids in photoprotection: new evidence, lessons from the past. Plant Physiol Biochem 72:35–45 es_ES
dc.description.references Albert A, Sareedenchai V, Heller W, Seidlitz HK, Zidorn C (2009) Temperature is the key to altitudinal variation of phenolics in Arnica montana L. cv. ARBO. Oecologia 160:1–8 es_ES
dc.description.references Appel K, Hirt H (2004) Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annu Rev Plant Biol 55:373–399 es_ES
dc.description.references Bachereau F, Marigo G, Asta J (1998) Effect of solar radiation (UV and visible) at high altitude on CAM-cycling and phenolic compounds biosynthesis in Sedum album. Physiol Plant 104:203–210 es_ES
dc.description.references Ballizany WL, Hofmann RV, Jahufer MZZ, Barrett BB (2012) Multivariate associations of flavonoid and biomass accumulation in white clover (Trifolium repens) under drought. Funct Plant Biol 39:167–177 es_ES
dc.description.references Bieza K, Lois R (2001) An Arabidopsis mutant tolerant to lethal ultraviolet-B levels shows constitutively elevated accumulation of flavonoids and other phenolics. Plant Physiol 126:1105–1115 es_ES
dc.description.references Bilger W, Rolland M, Nybakken L (2007) UV screening in higher plants induced by low temperature in the absence of UV-B radiation. Photochem Photobiol Sci 6:190–195 es_ES
dc.description.references Blumthaler M, Ambach M, Ellinger R (1997) Increase in solar UV radiation with altitude. J Photochem Photobiol B 39:130–134 es_ES
dc.description.references Boscaiu M, Lull C, Llinares J, Vicente O, Boira H (2013) Proline as a biochemical marker in relation to the ecology of two halophytic Juncus species. J Plant Ecol 6:177–186 es_ES
dc.description.references Bose J, Rodrigo-Moreno A, Shabala S (2013) ROS homeostasis in halophytes in the context of salinity stress tolerance. J Exp Bot 65:1241–1257 es_ES
dc.description.references Brown DE, Rashotte AM, Murphy AS, Normanly J, Tague BW, Peer WA, Taiz L, Muday GK (2001) Flavonoids act as a negative regulators of auxin transport in vivo in Arabidopsis. Plant Physiol 126:524–535 es_ES
dc.description.references Burchard P, Bilger W, Weissenböck G (2000) Contribution of hydroxycinnamates and flavonoids to epidermal shielding of UV-A and UV-B radiation in developing rye primary leaves as assessed by ultraviolet-induced chlorophyll fluorescence measurements. Plant Cell Environ 23:1373–1380 es_ES
dc.description.references Burriel F, Hernando V (1947) Nuevo método para determinar el fósforo asimilable en los suelos. Anales de Edafología Fisiología Vegetal 9:611–622 es_ES
dc.description.references Cheynier V, Comte G, Davies KM, Lattanzio V, Martens S (2013) Plant phenolics: recent advances on their biosynthesis, genetics, and ecophysiology. Plant Physiol Biochem 72:1–20 es_ES
dc.description.references Coman C, Rugina OD, Socaciu C (2012) Plants and natural compounds with antidiabetic action. Not Bot Horti Agrobo 40:314–325 es_ES
dc.description.references Di Ferdinando M, Brunetti C, Fini A, Tattini M (2012) Flavonoids as antioxidants in plants under abiotic stresses. In: Ahmad P, Prasad MNV (eds) Abiotic stress responses in plants: metabolism, productivity and sustainability. Springer, New York, pp 159–179 es_ES
dc.description.references Di Ferdinando M, Brunetti C, Agati G, Tattini M (2014) Multiple functions of polyphenols in plants inhabiting unfavourable Mediterranean areas. Environ Exper Bot 103:107–116 es_ES
dc.description.references FAO (1990) Management of gypsiferous soils. FAO Soils Bull, p 62 es_ES
dc.description.references Fini A, Brunetti C, Di Ferdinando M, Ferrini F, Tattini M (2011) Stress-induced flavonoid biosynthesis and the antioxidant machinery of plants. Plant Signal Behav 6:709–711 es_ES
dc.description.references Gil R, Lull C, Boscaiu M, Bautista I, Lidón A, Vicente O (2011) Soluble carbohydrates as osmolytes in several halophytes from a Mediterranean salt marsh. Not Bot Horti Agrobo 39:9–17 es_ES
dc.description.references Gil R, Bautista I, Boscaiu M, Lidón A, Wankhade S, Sánchez H, Llinares J, Vicente O (2014) Responses of five Mediterranean halophytes to seasonal changes in environmental conditions. AoB Plants 6: plu049 es_ES
dc.description.references Gould KS, Lister C (2006) Flavonoid function in plants. In: Andersen ØM, Marham KR (eds) Flavonoids, chemistry, biochemistry and application. CRC Press, Boca Raton, pp 397–442 es_ES
dc.description.references Hajimahmoodi M, Moghaddam G, Ranjbar AM, Khazani H, Sadeghi N, Oveisi MR, Jannat B (2013) Total phenolic, flavonoids, tannin content and antioxidant power of some Iranian pomegranate flower cultivars (Punica granatum L.). Am J Plant Sci 4:1815–1820 es_ES
dc.description.references Halliwell B (2006) Reactive species and antioxidants. Redox biology is a fundamental theme of aerobic life. Plant Physiol 141:312–322 es_ES
dc.description.references Harborne JB, Williams C (2000) Advances in flavonoid research since 1992. Phytochemistry 55:481–504 es_ES
dc.description.references Hernández I, Alegre L, Munné-Bosch S (2004) Drought-induced changes in flavonoids and other low molecular weight antioxidants in Cistus clusii grown under Mediterranean field conditions. Tree Physiol 24:1303–1311 es_ES
dc.description.references Hernández I, Alegre L, Van Breusegem F, Munné-Bosch S (2008) How relevant are flavonoids as antioxidants in plants? Trends Plant Sci 14:125–132 es_ES
dc.description.references Iwashina T (2000) The structure and distribution of the flavonoids in plants. J Plant Res 113:287–299 es_ES
dc.description.references Jaakola L, Määttä-Riihinen K, Kärenlampi S, Hohtola A (2004) Activation of flavonoid biosynthesis by solar radiation in bilberry (Vaccinium myrtillus L.) leaves. Planta 218:721–728 es_ES
dc.description.references Jenkins GI (2009) Signal transduction in responses to UB-B radiation. Annu Rev Plant Biol 60:407–431 es_ES
dc.description.references Jenkins GI, Long JC, Wade HK, Shenton MR, Bibikova TN (2001) UV and blue light signalling: pathways regulating chalcone synthase gene expression in Arabidopsis. New Phytol 151:121–131 es_ES
dc.description.references Kaulen H, Schell J, Kreuzaler F (1986) Light-induced expression of the chimeric chalcone synthase-NPTII gene in tobacco cells. EMBO J 5:1–8 es_ES
dc.description.references Kim DO, Jeong SW, Lee CY (2003) Antioxidant capacity of phenolic phytochemicals from various cultivars of plums. Food Chem 81:321–326 es_ES
dc.description.references Kirakosyan A, Seymour E, Kaufman PB, Warber S, Bolling S, Chang SC (2003) Antioxidant capacity of polyphenolic extracts from leaves of Crataegus laevigata and Crataegus monogyna (Hawthorn) subjected to drought and cold stress. J Agr Food Chem 51:3973–3976 es_ES
dc.description.references Knudssen D, Peterson GA, Pratt PF (1982) Lithium, Sodium and Potassium. In: Page AL et al (eds) Methods of soil analysis, chemical and microbiological properties. American Society of Agronomy, Madison, pp 225–246 es_ES
dc.description.references Koes RE, Spelt CE, Mol JNM (1989) The chalcone synthase multigene family of Petunia hybrida (V30): differential, light-regulated expression during flower development and UV light induction. Plant Mol Biol 12:213–225 es_ES
dc.description.references Körner C (1999) Alpine plant life. Functional plant ecology of high mountain ecosytems, Berlin es_ES
dc.description.references Kumar S, Pandey AK (2013) Chemistry and biological activities of flavonoids: an overview. Sci World J 2013:1–16 es_ES
dc.description.references Kuo S (1996) Phosphorus. In: Spark D (ed) Methods of soil analysis: chemical methods, part 3. American Society of Agronomy, Madison, pp 869–919 es_ES
dc.description.references Lavola A (1998) Accumulation of flavonoids and related compounds in birch induced by UV-B irradiance. Tree Physiol 18:53–58 es_ES
dc.description.references Li J, Ou-Lee TM, Raba R, Amundson RG, Last RL (1993) Arabidopsis flavonoid mutants are hypersensitive to UV-B radiation. Plant Cell 5:171–179 es_ES
dc.description.references Llinares JV, Bautista I, Donat MP, Lidón A, Lull C, Mayoral O, Wankhade S, Boscaiu M, Vicente O (2015) Responses to environmental stress in plants adapted to Mediterranean gypsum habitats. Not Sci Biol 7:34–44 es_ES
dc.description.references Marinova D, Ribarova F, Atanassova M (2005) Total phenolics and total flavonoids in Bulgarian fruits and vegetables. J Univ Chem Technol Metall 40:255–260 es_ES
dc.description.references Martens H, Naes T (1989) Multivariate calibration. Wiley, New York es_ES
dc.description.references Murai Y, Takemura S, Takeda K, Kitajima K, Iwashina T (2009) Altitudinal variation of UV-absorbing compounds in Plantago asiatica. Biochem Syst Ecol 37:78–384 es_ES
dc.description.references Nakabayashi R, Yonekura-Sakakibara K, Urano K, Suzuki M, Yamada Y, Nishizawa T, Matsuda F, Kojima M, Sakakibara H, Shinozaki K, Michael AJ, Tohge T, Yamazaki M, Saito K (2014) Enhancement of oxidative and drought tolerance in Arabidopsis by overaccumulation of antioxidant flavonoids. Plant J 77:367–379 es_ES
dc.description.references Napoli CA, Fahy D, Wang HY, Taylor LP (1999) white anther: a petunia mutant that abolishes pollen flavonoid accumulation, induces male sterility, and is complemented by a chalcone synthase transgene. Plant Physiol 120:615–622 es_ES
dc.description.references Nechita A, Cotea VV, Nechita CB, Pincu RR, Mihai CT, Colibaba CL (2012) Study of cytostatic and cytotoxic activity of several polyphenolic extracts obtained from Vitis vinifera. Not Bot Horti Agrobo 40:216–221 es_ES
dc.description.references Nelson DW, Sommers LE (1982) Total carbon, organic carbon, and organic matter. In: Page AL et al (eds) Methods of soil analysis, chemical and microbiological properties. Soil Science Society of America, Madison, pp 539–577 es_ES
dc.description.references Nelson RE, Klameth LC, Nettleton WD (1978) Determining soil gypsum content and expressing properties of gypsiferous soils. Soil Sci Soc Am J 42:659–661 es_ES
dc.description.references Nile SH, Khobragade CN (2010) Antioxidant activity and flavonoid derivatives of Plumbago zeylanica. J Nat Prod 3:130–133 es_ES
dc.description.references Park HL, Lee SW, Jung KH, Hahn TR, Cho MH (2013) Transcriptomic analysis of UV-treated rice leaves reveals UV-induced phytoalexin biosynthetic pathways and their regulatory networks in rice. Phytochemistry 96:57–71 es_ES
dc.description.references Pękal A, Pyrzynska K (2014) Evaluation of aluminium complexation reaction for flavonoid content assay. Food Anal Method 7:1776–1782 es_ES
dc.description.references Pollastri S, Tattini M (2011) Flavonols: old compounds for old roles. Ann Bot 108:1225–1233 es_ES
dc.description.references Ravishankar D, Rajora AK, Greco F, Osborn HM (2013) Flavonoids as prospective compounds for anti-cancer therapy. Int J Biochem Cell B 45:2821–2831 es_ES
dc.description.references Rice-Evans CA, Miller NJ, Paganga G (1996) Structure-antioxidant activity relationships of flavonoids and phenolic acids. Free Radical Bio Med 20:933–956 es_ES
dc.description.references Rieger G, Müller M, Guttenberger H, Bucar F (2008) Influence of altitudinal variation on the content of phenolic compounds in wild populations of Calluna vulgaris, Sambucus nigra, and Vaccinium myrtillus. J Agric Food Chem 58:9080–9086 es_ES
dc.description.references Rivas-Martínez S, Rivas-Saenz S (1996–2009) Worldwide bioclimatic classification system. Phytosociological Research Center, Spain. http://www.globalbioclimatics.org . Accessed 1 July 2013 es_ES
dc.description.references Rohman A, Riyanto S, Yuniarti N, Saputra WR, Utami R, Mulatsih W (2010) Antioxidant activity, total phenolic, and total flavonoid of extracts and fractions of red fruit (Pandanus conoideus Lam). Int Food Res J 17:97–106 es_ES
dc.description.references Romano B, Pagano E, Montanaro V, Fortunato AL, Milic N, Borrelli F (2013) Novel insights into the pharmacology of flavonoids. Phytother Res 27:1588–1596 es_ES
dc.description.references Rozema J, van de Staaij J, Björn LO, Caldwell MM (1997) UV-B as an environmental factor in plant life: stress and regulation. Trends Ecol Evol 12:22–28 es_ES
dc.description.references Rozema J, Bjorn LO, Bornman JF, Gaberščik A, Häder DP, Trošt T, Germ M, Klisch M, Gröniger A, Sinha RP, Lebert M, He YY, Buffoni-Hall R, de Bakker NVJ, van de Staaij J, Meijkamp BB (2002) The role of UV-B radiation in aquatic and terrestrial ecosystems—an experimental and functional analysis of the evolution of UV-absorbing compounds. Photochem Photobiol B Biol 66:2–12 es_ES
dc.description.references Schulze-Lefert P, Dangl JL, Becker-André M, Hahlbrock K, Schulz W (1989) Inducible in vivo DNA footprints define sequences necessary for UV light activation of the parsley chalcone synthase gene. EMBO J 8:651–656 es_ES
dc.description.references Sena MM, Frighetto RTS, Valarini PJ, Tokeshi H, Poppi RJ (2002) Discrimination of management effects on soil parameters by using principal component analysis: a multivariate analysis case study. Soil Till Res 67:171–181 es_ES
dc.description.references Shulaev V, Oliver DJ (2006) Metabolic and proteomic markers for oxidative stress. New tools for reactive oxygen species research. Plant Physiol 141:367–372 es_ES
dc.description.references Singleton VL, Rossi JA Jr (1965) Colorimetry of total phenolics with phosphomolybdic phosphotungstic acid reagents. Am J EnolVitic 16:144–158 es_ES
dc.description.references Spitaler R, Winkler A, Lins I, Yanar S, Stuppner H, Zidorn C (2008) Altitudinal variation of phenolic contents in flowering heads of Arnica montana cv. ARBO: a 3-year comparison. J Chem Ecol 34:369–375 es_ES
dc.description.references Stapleton AE, Walbot V (1994) Flavonoids can protect maize DNA from the induction of UV radiation damage. Plant Physiol 105:881–889 es_ES
dc.description.references Takahashi M, Asada K (1988) Superoxide production in aprotic interior of chloroplast thylakoids. Arch Biochem Biophys 267:714–722 es_ES
dc.description.references Tattini M, Gravano E, Pinelli P, Mulinacci N, Romani A (2000) Flavonoids accumulate in leaves and glandular trichomes of Phillyrea latifolia exposed to excess solar radiation. New Phytol 148:69–77 es_ES
dc.description.references Tattini M, Galardi C, Pinelli P, Massai R, Remorini D, Agati G (2004) Differential accumulation of flavonoids and hydroxycinnamates in leaves of Ligustrum vulgare under excess light and drought stress. New Phytol 163:547–561 es_ES
dc.description.references Treutter D (2005) Significance of flavonoids in plant resistance and enhancement of their biosynthesis. Plant Biol 7:581–591 es_ES
dc.description.references Treutter D (2006) Significance of flavonoids in plant resistance: a review. Environ Chem Lett 4:147–157 es_ES
dc.description.references Van Breusegem F, Dat JF (2006) Reactive oxygen species in plant cell death. Plant Physiol 141:384–390 es_ES
dc.description.references Williams CA, Grayer RJ (2004) Anthocyanins and other flavonoids. Nat Prod Rep 21:539–573 es_ES
dc.description.references Winkel-Shirley B (2002) Biosynthesis of flavonoids and effect of stress. Curr Opin Plant Biol 5:218–223 es_ES
dc.description.references Ylstra B, Touraev A, Benito Moreno RM, Stöger E, van Tunen AA, Vicente O, Mol JNM, Heberle-Bors E (1992) Flavonols stimulate development, germination and tube growth of tobacco pollen. Plant Physiol 100:902–907 es_ES
dc.description.references Zhishen J, Mengcheng T, Jianming W (1999) The determination of flavonoid contents in mulberry and their scavenging effects on superoxide radicals. Food Chem 64:555–559 es_ES
dc.description.references Zidorn C, Schubert B, Stuppner H (2005) Altitudinal differences in the contents of phenolics in flowering heads of three members of the tribe Lactuceae (Asteraceae) occurring as introduced species in New Zealand. Biochem Syst Ecol 33:855–872 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem