- -

Channeled scaffolds implanted in adult rat brain

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Channeled scaffolds implanted in adult rat brain

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Martínez Ramos, Cristina es_ES
dc.contributor.author Vallés Lluch, Ana es_ES
dc.contributor.author García Verdugo, José Manuel es_ES
dc.contributor.author Gómez Ribelles, José Luís es_ES
dc.contributor.author Barcia Albacar, Juan Antonio es_ES
dc.contributor.author Baiget Orts, María Amparo es_ES
dc.contributor.author Soria Lopez, Jose Miguel es_ES
dc.contributor.author Monleón Pradas, Manuel es_ES
dc.date.accessioned 2016-05-17T07:15:13Z
dc.date.available 2016-05-17T07:15:13Z
dc.date.issued 2012-12
dc.identifier.issn 1549-3296
dc.identifier.uri http://hdl.handle.net/10251/64170
dc.description.abstract Scaffolds with aligned channels based on acrylate copolymers, which had previously demonstrated good com- patibility with neural progenitor cells were studied as coloniz- able structures both in vitro with neural progenitor cells and in vivo, implanted without cells in two different locations, in the cortical plate of adult rat brains and close to the subven- tricular zone. In vitro, neuroprogenitors colonize the scaffold and differentiate into neurons and glia within its channels. When implanted in vivo immunohistochemical analysis by confocal microscopy for neural and endothelial cells markers demonstrated that the scaffolds maintained continuity with the surrounding neural tissue and were colonized by GFAP- positive cells and, in the case of scaffolds implanted in con- tact with the subventricular zone, by neurons. Local angio- genesis was evidenced in the interior of the scaffolds pores. New axons and neural cells from the adult neural niche abundantly colonized the biomaterial s inner structure after 2 months, and minimal scar formation was manifest around the implant. These findings indicate the biocompatibility of the polymeric material with the brain tissue and open possi- bilities to further studies on the relevance of factors such as scaffold structure, scaffold seeding and scaffold placement for their possible use in regenerative strategies in the central nervous system. The development of neural interfaces with minimized glial scar and improved tissue compatibility of the implants may also benefit from these results. es_ES
dc.description.sponsorship Contract grant sponsors: Fundacion Ramon Areces; Copernicus Program of University CEU-Cardenal Herrera; Regenerative Medicine Program Agreement between the Generalitat Valenciana and the Spanish National Health Institute Carlos III en_EN
dc.language Inglés es_ES
dc.publisher Wiley: 12 months es_ES
dc.relation.ispartof Journal of Biomedical Materials Research Part A es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Scaffold es_ES
dc.subject biocompatibility es_ES
dc.subject brain es_ES
dc.subject angiogenesis es_ES
dc.subject neural regeneration es_ES
dc.subject.classification MAQUINAS Y MOTORES TERMICOS es_ES
dc.title Channeled scaffolds implanted in adult rat brain es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1002/jbm.a.34273
dc.relation.projectID info:eu-repo/grantAgreement/MSC//CP04%2F00036/ES/CP04%2F00036/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//MAT2008-06434/ES/MATERIALES PARA REGENERACION NEURAL Y ANGIOGENESIS EN EL SISTEMA NERVIOSO CENTRAL/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MSC//PI05%2F075/ES/PI05%2F075/ es_ES
dc.rights.accessRights Cerrado es_ES
dc.contributor.affiliation Universitat Politècnica de València. Centro de Biomateriales e Ingeniería Tisular - Centre de Biomaterials i Enginyeria Tissular es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Termodinámica Aplicada - Departament de Termodinàmica Aplicada es_ES
dc.description.bibliographicCitation Martínez Ramos, C.; Vallés Lluch, A.; García Verdugo, JM.; Gómez Ribelles, JL.; Barcia Albacar, JA.; Baiget Orts, MA.; Soria Lopez, JM.... (2012). Channeled scaffolds implanted in adult rat brain. Journal of Biomedical Materials Research Part A. 100A(12):3276-3286. https://doi.org/10.1002/jbm.a.34273 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/10.1002/jbm.a.34273 es_ES
dc.description.upvformatpinicio 3276 es_ES
dc.description.upvformatpfin 3286 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 100A es_ES
dc.description.issue 12 es_ES
dc.relation.senia 235255 es_ES
dc.identifier.eissn 1552-4965
dc.contributor.funder Ministerio de Ciencia e Innovación es_ES
dc.contributor.funder Universidad CEU Cardenal Herrera es_ES
dc.contributor.funder Fundación Ramón Areces es_ES
dc.contributor.funder Instituto de Salud Carlos III es_ES
dc.contributor.funder Generalitat Valenciana es_ES
dc.description.references Cadelli, D. S., Bandtlow, C. E., & Schwab, M. E. (1992). Oligodendrocyte- and myelin-associated inhibitors of neurite outgrowth: Their involvement in the lack of CNS regeneration. Experimental Neurology, 115(1), 189-192. doi:10.1016/0014-4886(92)90246-m es_ES
dc.description.references Nishio, T. (2009). Axonal regeneration and neural network reconstruction in mammalian CNS. Journal of Neurology, 256(S3), 306-309. doi:10.1007/s00415-009-5244-x es_ES
dc.description.references Davies, S. J. ., & Silver, J. (1998). Adult axon regeneration in adult CNS white matter. Trends in Neurosciences, 21(12), 515. doi:10.1016/s0166-2236(98)01335-6 es_ES
dc.description.references Huang, D. ., McKerracher, L., Braun, P. ., & David, S. (1999). A Therapeutic Vaccine Approach to Stimulate Axon Regeneration in the Adult Mammalian Spinal Cord. Neuron, 24(3), 639-647. doi:10.1016/s0896-6273(00)81118-6 es_ES
dc.description.references McKerracher, L. (2001). Spinal Cord Repair: Strategies to Promote Axon Regeneration. Neurobiology of Disease, 8(1), 11-18. doi:10.1006/nbdi.2000.0359 es_ES
dc.description.references Bandtlow, C. (2003). Regeneration in the central nervous system. Experimental Gerontology, 38(1-2), 79-86. doi:10.1016/s0531-5565(02)00165-1 es_ES
dc.description.references Zhang, H., Hayashi, T., Tsuru, K., Deguchi, K., Nagahara, M., Hayakawa, S., … Abe, K. (2007). Vascular endothelial growth factor promotes brain tissue regeneration with a novel biomaterial polydimethylsiloxane–tetraethoxysilane. Brain Research, 1132, 29-35. doi:10.1016/j.brainres.2006.09.117 es_ES
dc.description.references Kemp, S. W. P., Syed, S., Walsh, S. K., Zochodne, D. W., & Midha, R. (2009). Collagen Nerve Conduits Promote Enhanced Axonal Regeneration, Schwann Cell Association, and Neovascularization Compared to Silicone Conduits. Tissue Engineering Part A, 15(8), 1975-1988. doi:10.1089/ten.tea.2008.0338 es_ES
dc.description.references Alvarez-Buylla, A., & Garcı́a-Verdugo, J. M. (2002). Neurogenesis in Adult Subventricular Zone. The Journal of Neuroscience, 22(3), 629-634. doi:10.1523/jneurosci.22-03-00629.2002 es_ES
dc.description.references Alvarez-Buylla, A., García-Verdugo, J. M., & Tramontin, A. D. (2001). A unified hypothesis on the lineage of neural stem cells. Nature Reviews Neuroscience, 2(4), 287-293. doi:10.1038/35067582 es_ES
dc.description.references Garcia-Verdugo, J. M., Llahi, S., Ferrer, I., & Lopez-Garcia, C. (1989). Postnatal neurogenesis in the olfactory bulbs of a lizard. A tritiated thymidine autoradiographic study. Neuroscience Letters, 98(3), 247-252. doi:10.1016/0304-3940(89)90408-4 es_ES
dc.description.references Marti-Fabregas, J., Romaguera-Ros, M., Gomez-Pinedo, U., Martinez-Ramirez, S., Jimenez-Xarrie, E., Marin, R., … Garcia-Verdugo, J.-M. (2010). Proliferation in the human ipsilateral subventricular zone after ischemic stroke. Neurology, 74(5), 357-365. doi:10.1212/wnl.0b013e3181cbccec es_ES
dc.description.references Alvarez-Buylla, A., & Lim, D. A. (2004). For the Long Run. Neuron, 41(5), 683-686. doi:10.1016/s0896-6273(04)00111-4 es_ES
dc.description.references Doetsch, F., & Scharff, C. (2001). Challenges for Brain Repair: Insights from Adult Neurogenesis in Birds and Mammals. Brain, Behavior and Evolution, 58(5), 306-322. doi:10.1159/000057572 es_ES
dc.description.references Doetsch, F. (2003). The glial identity of neural stem cells. Nature Neuroscience, 6(11), 1127-1134. doi:10.1038/nn1144 es_ES
dc.description.references Doetsch, F., Caillé, I., Lim, D. A., García-Verdugo, J. M., & Alvarez-Buylla, A. (1999). Subventricular Zone Astrocytes Are Neural Stem Cells in the Adult Mammalian Brain. Cell, 97(6), 703-716. doi:10.1016/s0092-8674(00)80783-7 es_ES
dc.description.references Kornack, D. R., & Rakic, P. (2001). The generation, migration, and differentiation of olfactory neurons in the adult primate brain. Proceedings of the National Academy of Sciences, 98(8), 4752-4757. doi:10.1073/pnas.081074998 es_ES
dc.description.references De Marchis, S., Temoney, S., Erdelyi, F., Bovetti, S., Bovolin, P., Szabo, G., & Puche, A. C. (2004). GABAergic phenotypic differentiation of a subpopulation of subventricular derived migrating progenitors. European Journal of Neuroscience, 20(5), 1307-1317. doi:10.1111/j.1460-9568.2004.03584.x es_ES
dc.description.references Garc�a-Verdugo, J. M., Doetsch, F., Wichterle, H., Lim, D. A., & Alvarez-Buylla, A. (1998). Architecture and cell types of the adult subventricular zone: In search of the stem cells. Journal of Neurobiology, 36(2), 234-248. doi:10.1002/(sici)1097-4695(199808)36:2<234::aid-neu10>3.0.co;2-e es_ES
dc.description.references Johansson, C. B., Momma, S., Clarke, D. L., Risling, M., Lendahl, U., & Frisén, J. (1999). Identification of a Neural Stem Cell in the Adult Mammalian Central Nervous System. Cell, 96(1), 25-34. doi:10.1016/s0092-8674(00)80956-3 es_ES
dc.description.references Reynolds, B., & Weiss, S. (1992). Generation of neurons and astrocytes from isolated cells of the adult mammalian central nervous system. Science, 255(5052), 1707-1710. doi:10.1126/science.1553558 es_ES
dc.description.references Xu, Q. (2003). Cortical Interneuron Fate Determination: Diverse Sources for Distinct Subtypes? Cerebral Cortex, 13(6), 670-676. doi:10.1093/cercor/13.6.670 es_ES
dc.description.references Lakatos, A., Barnett, S. C., & Franklin, R. J. . (2003). Olfactory ensheathing cells induce less host astrocyte response and chondroitin sulphate proteoglycan expression than schwann cells following transplantation into adult cns white matter. Experimental Neurology, 184(1), 237-246. doi:10.1016/s0014-4886(03)00270-x es_ES
dc.description.references Papadopoulos, C. M., Tsai, S.-Y., Alsbiei, T., O’Brien, T. E., Schwab, M. E., & Kartje, G. L. (2002). Functional recovery and neuroanatomical plasticity following middle cerebral artery occlusion and IN-1 antibody treatment in the adult rat. Annals of Neurology, 51(4), 433-441. doi:10.1002/ana.10144 es_ES
dc.description.references Hou, S., Xu, Q., Tian, W., Cui, F., Cai, Q., Ma, J., & Lee, I.-S. (2005). The repair of brain lesion by implantation of hyaluronic acid hydrogels modified with laminin. Journal of Neuroscience Methods, 148(1), 60-70. doi:10.1016/j.jneumeth.2005.04.016 es_ES
dc.description.references Park, K. I., Teng, Y. D., & Snyder, E. Y. (2002). The injured brain interacts reciprocally with neural stem cells supported by scaffolds to reconstitute lost tissue. Nature Biotechnology, 20(11), 1111-1117. doi:10.1038/nbt751 es_ES
dc.description.references Tian, W. M., Hou, S. P., Ma, J., Zhang, C. L., Xu, Q. Y., Lee, I. S., … Cui, F. Z. (2005). Hyaluronic Acid–Poly-D-Lysine-Based Three-Dimensional Hydrogel for Traumatic Brain Injury. Tissue Engineering, 11(3-4), 513-525. doi:10.1089/ten.2005.11.513 es_ES
dc.description.references Wong, D. Y., Krebsbach, P. H., & Hollister, S. J. (2008). Brain cortex regeneration affected by scaffold architectures. Journal of Neurosurgery, 109(4), 715-722. doi:10.3171/jns/2008/109/10/0715 es_ES
dc.description.references Morgan, R., Kreipke, C. W., Roberts, G., Bagchi, M., & Rafols, J. A. (2007). Neovascularization following traumatic brain injury: possible evidence for both angiogenesis and vasculogenesis. Neurological Research, 29(4), 375-381. doi:10.1179/016164107x204693 es_ES
dc.description.references Woerly, S., Petrov, P., Syková, E., Roitbak, T., Simonová, Z., & Harvey, A. R. (1999). Neural Tissue Formation Within Porous Hydrogels Implanted in Brain and Spinal Cord Lesions: Ultrastructural, Immunohistochemical, and Diffusion Studies. Tissue Engineering, 5(5), 467-488. doi:10.1089/ten.1999.5.467 es_ES
dc.description.references Osanai, T., Kuroda, S., Yasuda, H., Chiba, Y., Maruichi, K., Hokari, M., … Iwasaki, Y. (2010). Noninvasive Transplantation of Bone Marrow Stromal Cells for Ischemic Stroke: Preliminary Study With a Thermoreversible Gelation Polymer Hydrogel. Neurosurgery, 66(6), 1140-1147. doi:10.1227/01.neu.0000369610.76181.cf es_ES
dc.description.references Tabesh, H., Amoabediny, G., Nik, N. S., Heydari, M., Yosefifard, M., Siadat, S. O. R., & Mottaghy, K. (2009). The role of biodegradable engineered scaffolds seeded with Schwann cells for spinal cord regeneration. Neurochemistry International, 54(2), 73-83. doi:10.1016/j.neuint.2008.11.002 es_ES
dc.description.references Walker, P. A., Aroom, K. R., Jimenez, F., Shah, S. K., Harting, M. T., Gill, B. S., & Cox, C. S. (2009). Advances in Progenitor Cell Therapy Using Scaffolding Constructs for Central Nervous System Injury. Stem Cell Reviews and Reports, 5(3), 283-300. doi:10.1007/s12015-009-9081-1 es_ES
dc.description.references Martínez-Ramos, C., Lainez, S., Sancho, F., García Esparza, M. A., Planells-Cases, R., García Verdugo, J. M., … Soria, J. M. (2008). Differentiation of Postnatal Neural Stem Cells into Glia and Functional Neurons on Laminin-Coated Polymeric Substrates. Tissue Engineering Part A, 14(8), 1365-1375. doi:10.1089/ten.tea.2007.0295 es_ES
dc.description.references Soria, J. M., Martínez Ramos, C., Salmerón Sánchez, M., Benavent, V., Campillo Fernández, A., Gómez Ribelles, J. L., … Barcia, J. A. (2006). Survival and differentiation of embryonic neural explants on different biomaterials. Journal of Biomedical Materials Research Part A, 79A(3), 495-502. doi:10.1002/jbm.a.30803 es_ES
dc.description.references Soria, J. M., Martínez Ramos, C., Bahamonde, O., García Cruz, D. M., Salmerón Sánchez, M., García Esparza, M. A., … Barcia, J. A. (2007). Influence of the substrate’s hydrophilicity on thein vitro Schwann cells viability. Journal of Biomedical Materials Research Part A, 83A(2), 463-470. doi:10.1002/jbm.a.31297 es_ES
dc.description.references Vidaurre, A., Castilla Cortázar, I., & Meseguer, J. M. (2003). Water sorption properties of poly(ethyl acrylate-co-hydroxyethyl methacrylate) macroporous hydrogels. Macromolecular Symposia, 200(1), 283-290. doi:10.1002/masy.200351030 es_ES
dc.description.references Rodríguez Hernández, J. C., Serrano Aroca, Á., Gómez Ribelles, J. L., & Pradas, M. M. (2008). Three-dimensional nanocomposite scaffolds with ordered cylindrical orthogonal pores. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 84B(2), 541-549. doi:10.1002/jbm.b.30902 es_ES
dc.description.references Gritti, A., Galli, R., & Vescovi, A. L. (s. f.). Cultures of Stem Cells of the Central Nervous System. Protocols for Neural Cell Culture, 173-197. doi:10.1385/1-59259-207-4:173 es_ES
dc.description.references Paxinos, G., Watson, C., Pennisi, M., & Topple, A. (1985). Bregma, lambda and the interaural midpoint in stereotaxic surgery with rats of different sex, strain and weight. Journal of Neuroscience Methods, 13(2), 139-143. doi:10.1016/0165-0270(85)90026-3 es_ES
dc.description.references Hsu, S., Su, C.-H., & Chiu, I.-M. (2009). A Novel Approach to Align Adult Neural Stem Cells on Micropatterned Conduits for Peripheral Nerve Regeneration: A Feasibility Study. Artificial Organs, 33(1), 26-35. doi:10.1111/j.1525-1594.2008.00671.x es_ES
dc.description.references Yu, D., & Silva, G. A. (2008). Stem cell sources and therapeutic approaches for central nervous system and neural retinal disorders. Neurosurgical Focus, 24(3-4), E11. doi:10.3171/foc/2008/24/3-4/e10 es_ES
dc.description.references O’Keeffe, F. E., Scott, S. A., Tyers, P., O’Keeffe, G. W., Dalley, J. W., Zufferey, R., & Caldwell, M. A. (2008). Induction of A9 dopaminergic neurons from neural stem cells improves motor function in an animal model of Parkinson’s disease. Brain, 131(3), 630-641. doi:10.1093/brain/awm340 es_ES
dc.description.references Lindvall, O., & Björklund, A. (2004). Cell therapy in Parkinson’s disease. NeuroRX, 1(4), 382-393. doi:10.1602/neurorx.1.4.382 es_ES
dc.description.references Lindvall, O., & Björklund, A. (2004). Cell replacement therapy: Helping the brain to repair itself. NeuroRX, 1(4), 379-381. doi:10.1602/neurorx.1.4.379 es_ES
dc.description.references Hashimoto, T., Suzuki, Y., Kitada, M., Kataoka, K., Wu, S., Suzuki, K., … Ide, C. (2002). Peripheral nerve regeneration through alginate gel: analysis of early outgrowth and late increase in diameter of regenerating axons. Experimental Brain Research, 146(3), 356-368. doi:10.1007/s00221-002-1173-y es_ES
dc.description.references Bai, F., Wang, Z., Lu, J., Liu, J., Chen, G., Lv, R., … Huang, X. (2010). The Correlation Between the Internal Structure and Vascularization of Controllable Porous Bioceramic Materials In Vivo: A Quantitative Study. Tissue Engineering Part A, 16(12), 3791-3803. doi:10.1089/ten.tea.2010.0148 es_ES
dc.description.references Malda, J., Klein, T. J., & Upton, Z. (2007). The Roles of Hypoxia in the In Vitro Engineering of Tissues. Tissue Engineering, 13(9), 2153-2162. doi:10.1089/ten.2006.0417 es_ES
dc.description.references Suhonen, J. O., Peterson, D. A., Ray, J., & Gage, F. H. (1996). Differentiation of adult hippocampus-derived progenitors into olfactory neurons in vivo. Nature, 383(6601), 624-627. doi:10.1038/383624a0 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem