Mostrar el registro sencillo del ítem
dc.contributor.author | Martínez Ramos, Cristina | es_ES |
dc.contributor.author | Vallés Lluch, Ana | es_ES |
dc.contributor.author | García Verdugo, José Manuel | es_ES |
dc.contributor.author | Gómez Ribelles, José Luís | es_ES |
dc.contributor.author | Barcia Albacar, Juan Antonio | es_ES |
dc.contributor.author | Baiget Orts, María Amparo | es_ES |
dc.contributor.author | Soria Lopez, Jose Miguel | es_ES |
dc.contributor.author | Monleón Pradas, Manuel | es_ES |
dc.date.accessioned | 2016-05-17T07:15:13Z | |
dc.date.available | 2016-05-17T07:15:13Z | |
dc.date.issued | 2012-12 | |
dc.identifier.issn | 1549-3296 | |
dc.identifier.uri | http://hdl.handle.net/10251/64170 | |
dc.description.abstract | Scaffolds with aligned channels based on acrylate copolymers, which had previously demonstrated good com- patibility with neural progenitor cells were studied as coloniz- able structures both in vitro with neural progenitor cells and in vivo, implanted without cells in two different locations, in the cortical plate of adult rat brains and close to the subven- tricular zone. In vitro, neuroprogenitors colonize the scaffold and differentiate into neurons and glia within its channels. When implanted in vivo immunohistochemical analysis by confocal microscopy for neural and endothelial cells markers demonstrated that the scaffolds maintained continuity with the surrounding neural tissue and were colonized by GFAP- positive cells and, in the case of scaffolds implanted in con- tact with the subventricular zone, by neurons. Local angio- genesis was evidenced in the interior of the scaffolds pores. New axons and neural cells from the adult neural niche abundantly colonized the biomaterial s inner structure after 2 months, and minimal scar formation was manifest around the implant. These findings indicate the biocompatibility of the polymeric material with the brain tissue and open possi- bilities to further studies on the relevance of factors such as scaffold structure, scaffold seeding and scaffold placement for their possible use in regenerative strategies in the central nervous system. The development of neural interfaces with minimized glial scar and improved tissue compatibility of the implants may also benefit from these results. | es_ES |
dc.description.sponsorship | Contract grant sponsors: Fundacion Ramon Areces; Copernicus Program of University CEU-Cardenal Herrera; Regenerative Medicine Program Agreement between the Generalitat Valenciana and the Spanish National Health Institute Carlos III | en_EN |
dc.language | Inglés | es_ES |
dc.publisher | Wiley: 12 months | es_ES |
dc.relation.ispartof | Journal of Biomedical Materials Research Part A | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Scaffold | es_ES |
dc.subject | biocompatibility | es_ES |
dc.subject | brain | es_ES |
dc.subject | angiogenesis | es_ES |
dc.subject | neural regeneration | es_ES |
dc.subject.classification | MAQUINAS Y MOTORES TERMICOS | es_ES |
dc.title | Channeled scaffolds implanted in adult rat brain | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1002/jbm.a.34273 | |
dc.relation.projectID | info:eu-repo/grantAgreement/MSC//CP04%2F00036/ES/CP04%2F00036/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MICINN//MAT2008-06434/ES/MATERIALES PARA REGENERACION NEURAL Y ANGIOGENESIS EN EL SISTEMA NERVIOSO CENTRAL/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MSC//PI05%2F075/ES/PI05%2F075/ | es_ES |
dc.rights.accessRights | Cerrado | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Centro de Biomateriales e Ingeniería Tisular - Centre de Biomaterials i Enginyeria Tissular | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Termodinámica Aplicada - Departament de Termodinàmica Aplicada | es_ES |
dc.description.bibliographicCitation | Martínez Ramos, C.; Vallés Lluch, A.; García Verdugo, JM.; Gómez Ribelles, JL.; Barcia Albacar, JA.; Baiget Orts, MA.; Soria Lopez, JM.... (2012). Channeled scaffolds implanted in adult rat brain. Journal of Biomedical Materials Research Part A. 100A(12):3276-3286. https://doi.org/10.1002/jbm.a.34273 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | http://dx.doi.org/10.1002/jbm.a.34273 | es_ES |
dc.description.upvformatpinicio | 3276 | es_ES |
dc.description.upvformatpfin | 3286 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 100A | es_ES |
dc.description.issue | 12 | es_ES |
dc.relation.senia | 235255 | es_ES |
dc.identifier.eissn | 1552-4965 | |
dc.contributor.funder | Ministerio de Ciencia e Innovación | es_ES |
dc.contributor.funder | Universidad CEU Cardenal Herrera | es_ES |
dc.contributor.funder | Fundación Ramón Areces | es_ES |
dc.contributor.funder | Instituto de Salud Carlos III | es_ES |
dc.contributor.funder | Generalitat Valenciana | es_ES |
dc.description.references | Cadelli, D. S., Bandtlow, C. E., & Schwab, M. E. (1992). Oligodendrocyte- and myelin-associated inhibitors of neurite outgrowth: Their involvement in the lack of CNS regeneration. Experimental Neurology, 115(1), 189-192. doi:10.1016/0014-4886(92)90246-m | es_ES |
dc.description.references | Nishio, T. (2009). Axonal regeneration and neural network reconstruction in mammalian CNS. Journal of Neurology, 256(S3), 306-309. doi:10.1007/s00415-009-5244-x | es_ES |
dc.description.references | Davies, S. J. ., & Silver, J. (1998). Adult axon regeneration in adult CNS white matter. Trends in Neurosciences, 21(12), 515. doi:10.1016/s0166-2236(98)01335-6 | es_ES |
dc.description.references | Huang, D. ., McKerracher, L., Braun, P. ., & David, S. (1999). A Therapeutic Vaccine Approach to Stimulate Axon Regeneration in the Adult Mammalian Spinal Cord. Neuron, 24(3), 639-647. doi:10.1016/s0896-6273(00)81118-6 | es_ES |
dc.description.references | McKerracher, L. (2001). Spinal Cord Repair: Strategies to Promote Axon Regeneration. Neurobiology of Disease, 8(1), 11-18. doi:10.1006/nbdi.2000.0359 | es_ES |
dc.description.references | Bandtlow, C. (2003). Regeneration in the central nervous system. Experimental Gerontology, 38(1-2), 79-86. doi:10.1016/s0531-5565(02)00165-1 | es_ES |
dc.description.references | Zhang, H., Hayashi, T., Tsuru, K., Deguchi, K., Nagahara, M., Hayakawa, S., … Abe, K. (2007). Vascular endothelial growth factor promotes brain tissue regeneration with a novel biomaterial polydimethylsiloxane–tetraethoxysilane. Brain Research, 1132, 29-35. doi:10.1016/j.brainres.2006.09.117 | es_ES |
dc.description.references | Kemp, S. W. P., Syed, S., Walsh, S. K., Zochodne, D. W., & Midha, R. (2009). Collagen Nerve Conduits Promote Enhanced Axonal Regeneration, Schwann Cell Association, and Neovascularization Compared to Silicone Conduits. Tissue Engineering Part A, 15(8), 1975-1988. doi:10.1089/ten.tea.2008.0338 | es_ES |
dc.description.references | Alvarez-Buylla, A., & Garcı́a-Verdugo, J. M. (2002). Neurogenesis in Adult Subventricular Zone. The Journal of Neuroscience, 22(3), 629-634. doi:10.1523/jneurosci.22-03-00629.2002 | es_ES |
dc.description.references | Alvarez-Buylla, A., García-Verdugo, J. M., & Tramontin, A. D. (2001). A unified hypothesis on the lineage of neural stem cells. Nature Reviews Neuroscience, 2(4), 287-293. doi:10.1038/35067582 | es_ES |
dc.description.references | Garcia-Verdugo, J. M., Llahi, S., Ferrer, I., & Lopez-Garcia, C. (1989). Postnatal neurogenesis in the olfactory bulbs of a lizard. A tritiated thymidine autoradiographic study. Neuroscience Letters, 98(3), 247-252. doi:10.1016/0304-3940(89)90408-4 | es_ES |
dc.description.references | Marti-Fabregas, J., Romaguera-Ros, M., Gomez-Pinedo, U., Martinez-Ramirez, S., Jimenez-Xarrie, E., Marin, R., … Garcia-Verdugo, J.-M. (2010). Proliferation in the human ipsilateral subventricular zone after ischemic stroke. Neurology, 74(5), 357-365. doi:10.1212/wnl.0b013e3181cbccec | es_ES |
dc.description.references | Alvarez-Buylla, A., & Lim, D. A. (2004). For the Long Run. Neuron, 41(5), 683-686. doi:10.1016/s0896-6273(04)00111-4 | es_ES |
dc.description.references | Doetsch, F., & Scharff, C. (2001). Challenges for Brain Repair: Insights from Adult Neurogenesis in Birds and Mammals. Brain, Behavior and Evolution, 58(5), 306-322. doi:10.1159/000057572 | es_ES |
dc.description.references | Doetsch, F. (2003). The glial identity of neural stem cells. Nature Neuroscience, 6(11), 1127-1134. doi:10.1038/nn1144 | es_ES |
dc.description.references | Doetsch, F., Caillé, I., Lim, D. A., García-Verdugo, J. M., & Alvarez-Buylla, A. (1999). Subventricular Zone Astrocytes Are Neural Stem Cells in the Adult Mammalian Brain. Cell, 97(6), 703-716. doi:10.1016/s0092-8674(00)80783-7 | es_ES |
dc.description.references | Kornack, D. R., & Rakic, P. (2001). The generation, migration, and differentiation of olfactory neurons in the adult primate brain. Proceedings of the National Academy of Sciences, 98(8), 4752-4757. doi:10.1073/pnas.081074998 | es_ES |
dc.description.references | De Marchis, S., Temoney, S., Erdelyi, F., Bovetti, S., Bovolin, P., Szabo, G., & Puche, A. C. (2004). GABAergic phenotypic differentiation of a subpopulation of subventricular derived migrating progenitors. European Journal of Neuroscience, 20(5), 1307-1317. doi:10.1111/j.1460-9568.2004.03584.x | es_ES |
dc.description.references | Garc�a-Verdugo, J. M., Doetsch, F., Wichterle, H., Lim, D. A., & Alvarez-Buylla, A. (1998). Architecture and cell types of the adult subventricular zone: In search of the stem cells. Journal of Neurobiology, 36(2), 234-248. doi:10.1002/(sici)1097-4695(199808)36:2<234::aid-neu10>3.0.co;2-e | es_ES |
dc.description.references | Johansson, C. B., Momma, S., Clarke, D. L., Risling, M., Lendahl, U., & Frisén, J. (1999). Identification of a Neural Stem Cell in the Adult Mammalian Central Nervous System. Cell, 96(1), 25-34. doi:10.1016/s0092-8674(00)80956-3 | es_ES |
dc.description.references | Reynolds, B., & Weiss, S. (1992). Generation of neurons and astrocytes from isolated cells of the adult mammalian central nervous system. Science, 255(5052), 1707-1710. doi:10.1126/science.1553558 | es_ES |
dc.description.references | Xu, Q. (2003). Cortical Interneuron Fate Determination: Diverse Sources for Distinct Subtypes? Cerebral Cortex, 13(6), 670-676. doi:10.1093/cercor/13.6.670 | es_ES |
dc.description.references | Lakatos, A., Barnett, S. C., & Franklin, R. J. . (2003). Olfactory ensheathing cells induce less host astrocyte response and chondroitin sulphate proteoglycan expression than schwann cells following transplantation into adult cns white matter. Experimental Neurology, 184(1), 237-246. doi:10.1016/s0014-4886(03)00270-x | es_ES |
dc.description.references | Papadopoulos, C. M., Tsai, S.-Y., Alsbiei, T., O’Brien, T. E., Schwab, M. E., & Kartje, G. L. (2002). Functional recovery and neuroanatomical plasticity following middle cerebral artery occlusion and IN-1 antibody treatment in the adult rat. Annals of Neurology, 51(4), 433-441. doi:10.1002/ana.10144 | es_ES |
dc.description.references | Hou, S., Xu, Q., Tian, W., Cui, F., Cai, Q., Ma, J., & Lee, I.-S. (2005). The repair of brain lesion by implantation of hyaluronic acid hydrogels modified with laminin. Journal of Neuroscience Methods, 148(1), 60-70. doi:10.1016/j.jneumeth.2005.04.016 | es_ES |
dc.description.references | Park, K. I., Teng, Y. D., & Snyder, E. Y. (2002). The injured brain interacts reciprocally with neural stem cells supported by scaffolds to reconstitute lost tissue. Nature Biotechnology, 20(11), 1111-1117. doi:10.1038/nbt751 | es_ES |
dc.description.references | Tian, W. M., Hou, S. P., Ma, J., Zhang, C. L., Xu, Q. Y., Lee, I. S., … Cui, F. Z. (2005). Hyaluronic Acid–Poly-D-Lysine-Based Three-Dimensional Hydrogel for Traumatic Brain Injury. Tissue Engineering, 11(3-4), 513-525. doi:10.1089/ten.2005.11.513 | es_ES |
dc.description.references | Wong, D. Y., Krebsbach, P. H., & Hollister, S. J. (2008). Brain cortex regeneration affected by scaffold architectures. Journal of Neurosurgery, 109(4), 715-722. doi:10.3171/jns/2008/109/10/0715 | es_ES |
dc.description.references | Morgan, R., Kreipke, C. W., Roberts, G., Bagchi, M., & Rafols, J. A. (2007). Neovascularization following traumatic brain injury: possible evidence for both angiogenesis and vasculogenesis. Neurological Research, 29(4), 375-381. doi:10.1179/016164107x204693 | es_ES |
dc.description.references | Woerly, S., Petrov, P., Syková, E., Roitbak, T., Simonová, Z., & Harvey, A. R. (1999). Neural Tissue Formation Within Porous Hydrogels Implanted in Brain and Spinal Cord Lesions: Ultrastructural, Immunohistochemical, and Diffusion Studies. Tissue Engineering, 5(5), 467-488. doi:10.1089/ten.1999.5.467 | es_ES |
dc.description.references | Osanai, T., Kuroda, S., Yasuda, H., Chiba, Y., Maruichi, K., Hokari, M., … Iwasaki, Y. (2010). Noninvasive Transplantation of Bone Marrow Stromal Cells for Ischemic Stroke: Preliminary Study With a Thermoreversible Gelation Polymer Hydrogel. Neurosurgery, 66(6), 1140-1147. doi:10.1227/01.neu.0000369610.76181.cf | es_ES |
dc.description.references | Tabesh, H., Amoabediny, G., Nik, N. S., Heydari, M., Yosefifard, M., Siadat, S. O. R., & Mottaghy, K. (2009). The role of biodegradable engineered scaffolds seeded with Schwann cells for spinal cord regeneration. Neurochemistry International, 54(2), 73-83. doi:10.1016/j.neuint.2008.11.002 | es_ES |
dc.description.references | Walker, P. A., Aroom, K. R., Jimenez, F., Shah, S. K., Harting, M. T., Gill, B. S., & Cox, C. S. (2009). Advances in Progenitor Cell Therapy Using Scaffolding Constructs for Central Nervous System Injury. Stem Cell Reviews and Reports, 5(3), 283-300. doi:10.1007/s12015-009-9081-1 | es_ES |
dc.description.references | Martínez-Ramos, C., Lainez, S., Sancho, F., García Esparza, M. A., Planells-Cases, R., García Verdugo, J. M., … Soria, J. M. (2008). Differentiation of Postnatal Neural Stem Cells into Glia and Functional Neurons on Laminin-Coated Polymeric Substrates. Tissue Engineering Part A, 14(8), 1365-1375. doi:10.1089/ten.tea.2007.0295 | es_ES |
dc.description.references | Soria, J. M., Martínez Ramos, C., Salmerón Sánchez, M., Benavent, V., Campillo Fernández, A., Gómez Ribelles, J. L., … Barcia, J. A. (2006). Survival and differentiation of embryonic neural explants on different biomaterials. Journal of Biomedical Materials Research Part A, 79A(3), 495-502. doi:10.1002/jbm.a.30803 | es_ES |
dc.description.references | Soria, J. M., Martínez Ramos, C., Bahamonde, O., García Cruz, D. M., Salmerón Sánchez, M., García Esparza, M. A., … Barcia, J. A. (2007). Influence of the substrate’s hydrophilicity on thein vitro Schwann cells viability. Journal of Biomedical Materials Research Part A, 83A(2), 463-470. doi:10.1002/jbm.a.31297 | es_ES |
dc.description.references | Vidaurre, A., Castilla Cortázar, I., & Meseguer, J. M. (2003). Water sorption properties of poly(ethyl acrylate-co-hydroxyethyl methacrylate) macroporous hydrogels. Macromolecular Symposia, 200(1), 283-290. doi:10.1002/masy.200351030 | es_ES |
dc.description.references | Rodríguez Hernández, J. C., Serrano Aroca, Á., Gómez Ribelles, J. L., & Pradas, M. M. (2008). Three-dimensional nanocomposite scaffolds with ordered cylindrical orthogonal pores. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 84B(2), 541-549. doi:10.1002/jbm.b.30902 | es_ES |
dc.description.references | Gritti, A., Galli, R., & Vescovi, A. L. (s. f.). Cultures of Stem Cells of the Central Nervous System. Protocols for Neural Cell Culture, 173-197. doi:10.1385/1-59259-207-4:173 | es_ES |
dc.description.references | Paxinos, G., Watson, C., Pennisi, M., & Topple, A. (1985). Bregma, lambda and the interaural midpoint in stereotaxic surgery with rats of different sex, strain and weight. Journal of Neuroscience Methods, 13(2), 139-143. doi:10.1016/0165-0270(85)90026-3 | es_ES |
dc.description.references | Hsu, S., Su, C.-H., & Chiu, I.-M. (2009). A Novel Approach to Align Adult Neural Stem Cells on Micropatterned Conduits for Peripheral Nerve Regeneration: A Feasibility Study. Artificial Organs, 33(1), 26-35. doi:10.1111/j.1525-1594.2008.00671.x | es_ES |
dc.description.references | Yu, D., & Silva, G. A. (2008). Stem cell sources and therapeutic approaches for central nervous system and neural retinal disorders. Neurosurgical Focus, 24(3-4), E11. doi:10.3171/foc/2008/24/3-4/e10 | es_ES |
dc.description.references | O’Keeffe, F. E., Scott, S. A., Tyers, P., O’Keeffe, G. W., Dalley, J. W., Zufferey, R., & Caldwell, M. A. (2008). Induction of A9 dopaminergic neurons from neural stem cells improves motor function in an animal model of Parkinson’s disease. Brain, 131(3), 630-641. doi:10.1093/brain/awm340 | es_ES |
dc.description.references | Lindvall, O., & Björklund, A. (2004). Cell therapy in Parkinson’s disease. NeuroRX, 1(4), 382-393. doi:10.1602/neurorx.1.4.382 | es_ES |
dc.description.references | Lindvall, O., & Björklund, A. (2004). Cell replacement therapy: Helping the brain to repair itself. NeuroRX, 1(4), 379-381. doi:10.1602/neurorx.1.4.379 | es_ES |
dc.description.references | Hashimoto, T., Suzuki, Y., Kitada, M., Kataoka, K., Wu, S., Suzuki, K., … Ide, C. (2002). Peripheral nerve regeneration through alginate gel: analysis of early outgrowth and late increase in diameter of regenerating axons. Experimental Brain Research, 146(3), 356-368. doi:10.1007/s00221-002-1173-y | es_ES |
dc.description.references | Bai, F., Wang, Z., Lu, J., Liu, J., Chen, G., Lv, R., … Huang, X. (2010). The Correlation Between the Internal Structure and Vascularization of Controllable Porous Bioceramic Materials In Vivo: A Quantitative Study. Tissue Engineering Part A, 16(12), 3791-3803. doi:10.1089/ten.tea.2010.0148 | es_ES |
dc.description.references | Malda, J., Klein, T. J., & Upton, Z. (2007). The Roles of Hypoxia in the In Vitro Engineering of Tissues. Tissue Engineering, 13(9), 2153-2162. doi:10.1089/ten.2006.0417 | es_ES |
dc.description.references | Suhonen, J. O., Peterson, D. A., Ray, J., & Gage, F. H. (1996). Differentiation of adult hippocampus-derived progenitors into olfactory neurons in vivo. Nature, 383(6601), 624-627. doi:10.1038/383624a0 | es_ES |