- -

Promoted hexagonal tungsten bronzes as selective catalysts in the aerobic transformation of alcohols: glycerol and methanol

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Promoted hexagonal tungsten bronzes as selective catalysts in the aerobic transformation of alcohols: glycerol and methanol

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Soriano Rodríguez, Mª Dolores es_ES
dc.contributor.author Chieregato, A. es_ES
dc.contributor.author Zamora Blanco, Segundo es_ES
dc.contributor.author Basile, F. es_ES
dc.contributor.author Cavani, F. es_ES
dc.contributor.author López Nieto, José Manuel es_ES
dc.date.accessioned 2016-05-17T07:23:05Z
dc.date.available 2016-05-17T07:23:05Z
dc.date.issued 2016-02
dc.identifier.issn 1022-5528
dc.identifier.uri http://hdl.handle.net/10251/64177
dc.description.abstract [EN] M-containing tungsten oxides bronzes (M = Ti, Nb or V) with hexagonal tungsten bronze (HTB) structure have been investigated as catalysts for the aerobic transformation of glycerol and methanol. The catalysts were prepared hydrothermally and characterized by several physico chemical techniques, i.e. N-2-adsorption, XRD, Raman spectroscopy and temperature programmed desorption of ammonia. Interesting variations in the thermal stability of the HTB-framework were observed according to the element introduced into the oxide structure. In addition, the incorporation of Ti and Nb modified the acid features of the hexagonal tungsten oxides, whereas V introduced new redox sites. The catalytic results for the aerobic transformation of glycerol and methanol in terms of conversion and nature of reaction products are discussed on the basis of the physicochemical characteristics of catalysts. es_ES
dc.description.sponsorship JMLN and MDS thank the Spanish Government-MINECO (CTQ2012-37925-C03-1 and program Severo Ochoa SEV-2012-0267). CIRI and INSTM are acknowledged for the grant to AC.
dc.language Inglés es_ES
dc.publisher Springer Verlag (Germany) es_ES
dc.relation.ispartof Topics in Catalysis es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Vanadium, tiutanium and niobium promoters es_ES
dc.subject Hexagonal tungsten bronzes es_ES
dc.subject Selective catalysts es_ES
dc.subject Aerobic transformation of alcohols: glycerol and methanol es_ES
dc.subject Metal oxides es_ES
dc.subject Bronze es_ES
dc.subject Tungsten es_ES
dc.subject Aerobic transformation es_ES
dc.subject Methanol es_ES
dc.subject Glycerol es_ES
dc.title Promoted hexagonal tungsten bronzes as selective catalysts in the aerobic transformation of alcohols: glycerol and methanol es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1007/s11244-015-0440-7
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//CTQ2012-37925-C03-01/ES/CATALIZADORES PARA LA ENERGIA Y EL MEDIOAMBIENTE: ACTIVACION SELECTIVA DE ENLACES S-H Y C-H/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//SEV-2012-0267/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario Mixto de Tecnología Química - Institut Universitari Mixt de Tecnologia Química es_ES
dc.description.bibliographicCitation Soriano Rodríguez, MD.; Chieregato, A.; Zamora Blanco, S.; Basile, F.; Cavani, F.; López Nieto, JM. (2016). Promoted hexagonal tungsten bronzes as selective catalysts in the aerobic transformation of alcohols: glycerol and methanol. Topics in Catalysis. 59(2-4):178-185. https://doi.org/10.1007/s11244-015-0440-7 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/10.1007/s11244-015-0440-7 es_ES
dc.description.upvformatpinicio 178 es_ES
dc.description.upvformatpfin 185 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 59 es_ES
dc.description.issue 2-4 es_ES
dc.relation.senia 302273 es_ES
dc.contributor.funder Ministerio de Economía y Competitividad
dc.description.references Grasselli RK, Burrington JD, Buttrey DJ, DeSanto P Jr, Cl G, Lugmair AF, Jr Volpe, Weingand Th (2003) Top Catal 23:5–22 es_ES
dc.description.references Wachs IE, Routray K (2012) ACS Catal 2:1235–1246 es_ES
dc.description.references Macht J, Iglesia E (2008) Phys Chem Chem Phys 10:5331–5343 es_ES
dc.description.references Chieregato A, Lopez Nieto JM, Cavani F (2015) Coord Chem Rev. doi: 10.1016/j.ccr.2014.12.003 es_ES
dc.description.references Greenblatt Martha (1988) Chem Rev 88:31–53 es_ES
dc.description.references Guo JD, Whittingham MS (1993) Int J Mod Phys B 7:4145 es_ES
dc.description.references Rödel E, Timpe O, Trunschke A, Zenkovets GA, Kryukova GN, Schlögl R, Ressler T (2007) Catal Today 126:112–118 es_ES
dc.description.references Mestl G (2006) Top Catal 38:69–98 es_ES
dc.description.references Botella P, Solsona B, López Nieto JM, Concepción P, Jordá JL, Doménech Carbó MT (2010) Catal Today 158:162–169 es_ES
dc.description.references Blanch Raga N, Soriano MD, Palomares AE, Concepción P, Martínez-Triguero J, López Nieto JM (2013) Appl Catal B 130–131:36–43 es_ES
dc.description.references Tsuji Y Koyasu (2002) J Am Chem Soc 124:5608–5610 es_ES
dc.description.references Millet JMM, Roussel H, Pigamo A, Dubois JL, Jumas JC (2002) Appl Catal A 232:77–92 es_ES
dc.description.references Sadakane M, Endo K, Kodato K, Ishikawa S, Murayama T, Ueda W (2013) Eur J Inorg Chem 10–11:1731–1736 es_ES
dc.description.references Concepcion P, Hernandez S, Lopez Nieto JM (2011) Appl Catal A 391:92–101 es_ES
dc.description.references Sanchez Sanchez MC, Girgsdies F, Jastak M, Kube P, Schlogl R, Trunschke A (2012) Angew. Chem Int Ed 51:7194–7197 es_ES
dc.description.references Li X, Buttrey D, Blom D, Vogt T (2011) Top Catal 54:614 es_ES
dc.description.references Sadakane M, Watanabe N, Katou T, Nodasaka Y, Ueda W (2007) Angew Chem Int Ed 46:1493 es_ES
dc.description.references Botella P, Solsona B, García-González E, González-Calbet JM, López Nieto JM (2007) Chem Commun 47:5040–5042 es_ES
dc.description.references Wang L, Zhan J, Fan W, Cui G, Sun H, Zhuo L, Zhao X, Tang B (2010) Chem Commun 46:8833–8835 es_ES
dc.description.references Miseki Y, Kudo A (2011) ChemSusChem 4:245–251 es_ES
dc.description.references Soriano MD, Concepción P, López Nieto JM, Cavani F, Guidetti S, Trevisanut C (2011) Green Chem 13:2954–2962 es_ES
dc.description.references Chieregato A, Basile F, Concepción P, Guidetti S, Liosi G, Soriano MD, Trevisanut C, Cavani F, López Nieto JM (2012) Catal Today 197:58–65 es_ES
dc.description.references Chieregato A, Soriano MD, Basile F, Liosi G, Zamora S, Concepción P, Cavani F, López Nieto JM (2014) Appl Catal B 150–151:37–46 es_ES
dc.description.references Chieregato A, Soriano MD, García-González E, Puglia G, Basile F, Concepción P, Bandinelli C, López Nieto JM, Cavani F (2015) ChemSusChem 8:398–406 es_ES
dc.description.references García-González E, Soriano MD, Urones-Garrote E, López Nieto JM (2014) Dalton Trans 43:14644–14652 es_ES
dc.description.references Liu Y, Shrestha S, Mustain WE (2012) ACS Catal 2:456–463 es_ES
dc.description.references Zhang Zh, Liu J, Gu J, Su L, Cheng L (2014) Energy Environ Sci 7:2535–2558 es_ES
dc.description.references Tatibouët JM (1997) Appl Catal A 148:213–252 es_ES
dc.description.references Badlani M, Wachs IE (2001) Catal Lett 75:137–149 es_ES
dc.description.references Rajagopal S, Nataraj D, Mangalaraj D, Djaoued Y, Robichaaud J, Kzyzhun OYu (2009) Nanoscale Res 4:1335–1342 es_ES
dc.description.references Szilagyi IM, Madarasz J, Pokol G, Kiraly P, Tarkanyi G, Saukko S, Mizsei J, Toth AL, Szabo A, Varga-Josepovits K (2008) Chem Mater 20:4116 es_ES
dc.description.references Ekstrom T, Nygren M (1972) Acta Chem Scand 26:1827–1835 es_ES
dc.description.references Ekstrom T, Nygren M (1972) Acta Chem Scand 26:1836–1842 es_ES
dc.description.references Ekstrom T (1972) Acta Chem Scand 26:1843–1846 es_ES
dc.description.references Liu J, Zhao Z, Xu C, Duan A, Jiang G, Gao J, Lin W, Wachs I (2008) Sci China Ser B: Chem 51:551–561 es_ES
dc.description.references Griffith ChS, Luca V, Hanna JV, Pike KJ, Smith ME, Thorogood GS (2009) Inorg Chem 48:5648–5662 es_ES
dc.description.references Hutchings GJ, Hunter R, van Rensburg LJ (1988) Appl Catal 41:253–259 es_ES
dc.description.references Massa M, Andersson A, Finocchio E, Busca G (2013) J Catal 307:170–184 es_ES
dc.description.references Shen L, Yin H, Wang A, Lu X, Zhang C (2014) Chem Eng J 244:168–177 es_ES
dc.description.references Anpo M, Tanahashi, Kubokawa Y (1982) J Phys Chem 86:1 es_ES
dc.description.references Sojka Z, Che M (1995) J Phys Chem 99:5418 es_ES
dc.description.references Dubois JL, Duquenne C, Hölderich W (2006) Eur Patent 1 874 720; assigned to Arkema France es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem